Chemistry Reference
In-Depth Information
227. Y. Ionikh, A.V. Meshchanov, J. Röpcke, and A. Rousseau. A diode laser study and
modeling of NO and NO 2 formation in a pulsed DC air discharge. Chem. Phys. ,
322:411-422, 2006.
228. L.V. Gatilova, K. Allegraud, J. Guillon, Y.Z. Ionikh, G. Cartry, J. Röpcke, and
A. Rousseau. NO formation mechanisms studied by infrared laser absorption in a
single low-pressure plasma pulse. PlasmaSourcesSci.Technol. , 16:S107-S114, 2007.
229. K. Namjou, S. Cai, E.A. Whittaker, J. Faist, C. Gmachl, F. Capassoa, D.L.
Sivco, and A.Y. Cho. Sensitive absorption spectroscopy with a room-temperature
distributed-feedback quantum-cascade laser. Opt. Lett. , 23:219-221, 1998.
230. D.D. Nelson, J.H. Shorter, J.B. McManus, and M.S. Zahniser. Sub-part-per-billion
detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum
cascade laser spectrometer. Appl. Phys. B , 75:343-350, 2002.
231. T. Beyer, M. Braun, and A. Lambrecht. Fast gas spectroscopy using pulsed quantum
cascade lasers. J. Appl. Phys. , 93:3158-3160, 2003.
232. S. Welzel, L. Gatilova, J. Röpcke, and A. Rousseau. Time-resolved study of a pulsed
dc discharge using quantum cascade laser absorption spectroscopy: NO and gas
temperature kinetics. Plasma Sources Sci. Technol. , 16:822-831, 2007.
233. A. Rousseau, O. Guaitella, L. Gatilova, F. Thevenet, C. Guillard, J. Röpcke, and G.D.
Stancu. Photocatalyst activation in a pulsed low pressure discharge. Appl. Phys. Lett. ,
87:221501, 2005.
234. G.D. Stancu, N. Lang, J. Röpcke, M. Reinicke, A. Steinbach, and S. Wege. In situ
monitoring of silicon plasma etching using a quantum cascade laser arrangement.
Chem. Vap. Depos. , 13:351-360, 2007.
235. W. Demtröder. Laser Spectroscopy: Basic Concepts and Instrumentation , 3rd edn.
Springer Verlag, Berlin, Germany, 2003.
236. J. Amorim, G. Baravian, and J. Jolly. Laser-induced resonance fluorescence as a
diagnostic technique in non-thermal equilibrium plasmas. J. Phys. D Appl. Phys. ,
33:R51-R65, 2000.
237. K. Kohse-Höinghaus. Laser techniques for the quantitative detection of reactive
intermediates in combustion systems. Prog.EnergyCombust.Sci. , 20:203-279, 1994.
238. S. Mazouffre, C. Foissac, P. Supiot, P. Vankan, R. Engeln, D.C. Schram, and
N. Sadeghi. Density and temperature of n atoms in the afterglow of a microwave
discharge measured by a two-photon laser-induced fluorescence technique. Plasma
Sources Sci. Technol. , 10:168-175, 2001.
239. F. Skiff and J. Bollinger. Mini-conference on laser-induced fluorescence in plasmas.
Phys. Plasmas , 11:2972-2975, 2004.
240. U. Czarnetki, D. Luggenhölscher, and H.F. Döbele. Space and time resolved electric
field measurements in helium and hydrogen RF-discharges. Plasma Source. Sci.
Technol. , 8:230-248, 1999.
241. U. Czarnetzki, K. Miyazaki, and T. Kajiwara. Comparison of various two-photon
excitation schemes for laser-induced fluorescence spectroscopy in atomic hydrogen.
J. Opt. Soc. Am. B , 11:2155-2162, 1994.
242. R.B. Green, R.A. Keller, and G.G. Luther. Galvanic detection of optical absorptions
in a gas discharge. Appl. Phys. Lett. , 29:727-729, 1976.
243. M. Ducloy. Nonlinear effects in optical pumping of atoms by a high-intensity
multimode gas laser—General theory. Phys. Rev. A , 8:1844-1859, 1973.
244. A. Dinklage, T. Lokayczyk, and H.-J. Kunze. Measurement of the 2 3 S population
in a 4 He beam by means of laser-induced fluorescence. J. Phys. B At. Mol. Phys. ,
29:1655-1665, 1996.
Search WWH ::




Custom Search