Chemistry Reference
In-Depth Information
124. N. Niemöller, V. Schulz-von der Gathen, A. Stampa, and H.F. Döbele. A quasi-
optical 1 mm microwave heterodyne interferometer for plasma diagnostics using a
frequency-tripled Gunn oscillator. Plasma Sources Sci. Technol. , 6:478-483, 1997.
125. P.F. Goldsmith. Quasioptical Systems . IEEE Press, Piscataway, NJ, 1998.
126. S. Svanberg. Atomic and Molecular Spectroscopy: Basic Aspects and Practical
Applications ,Vol.6of Springer Series on Atoms and Plasmas . Springer-Verlag,
Berlin, Germany, 1990.
127. W. Neumann. Spektroskopische Methoden der Plasmaphysik. In R. Rompe
and M. Steenbeck, eds., Ergebnisse der Plasmahysik und Gaselektronik .
Akademie-Verlag, Berlin, Germany, 1970.
128. W. Lochte-Holtgreven. Plasma Diagnostics . American Institute of Physics, New
York, 1995.
129. H.R. Griem. Plasma Spectroscopy . McGraw-Hill Book Company, New York, 1964.
130. W. Demtröder. Laserspektroskopie . Springer-Verlag, Berlin, Germany, 1991.
131. U. Fantz. Basics of plasma spectroscopy. Plasma Sources Sci. Technol. ,
15:S137-S147, 2006.
132. A. Ohl. Large area planar microwave discharges. In C.M. Ferreira, ed., Microwave
Discharges: Fundamentals and Applications , NATO ASI series, pp. 205-214.
Plenum Publishing Corporation, New York, 1993.
133. J. Röpcke, L. Mechold, M. Käning, W.Y. Fan, and P.B. Davies. Tunable diode laser
diagnostic studies of H 2 -Ar-O 2 microwave plasmas containing methane or methanol.
Plasma Chem. Plasma Process. , 19:395-419, 1999.
134. F. Hempel, P.B. Davies, D. Loffhagen, L. Mechold, and J. Röpcke. Diagnostic
studies of H 2 -Ar-N 2 microwave plasmas containing methane or methanol using
tunable infrared diode laser absorption spectroscopy. Plasma Sources Sci. Technol. ,
12:S98-S110, 2003.
135. J. Röpcke, G. Lombardi, A. Rousseau, and P.B. Davies. Application of mid-infrared
tuneable diode laser absorption spectroscopy to plasma diagnostics: A review. Plasma
Sources Sci. Technol. , 15:S148-S168, 2006.
136. G. Duxbury. Infrared Vibration-Rotation Spectroscopy: From Free Radicals to the
Infrared Sky . Wiley, Chichester, U.K., 2000.
137. F.K. Tittel, D. Richte, and A. Freed. Mid-infrared laser applications in spectroscopy.
In I.T. Sorokina and K.L. Vodopyanov, eds., Solid State Infrared Sources ,Vol.89of
Topics in Applied. Physics , p. 445. Springer, Berlin, Germany, 2003.
138. D.G. Lancaster, D. Richter, and F.K. Tittel. Portable fiber-coupled diode-laser-based
sensor for multiple trace gas detection. Appl. Phys. B. , 69:459-465, 1999.
139. D. Rehle, D. Leleux, M. Erdely, F.K. Tittel, M. Fraser, and S. Friedfeld. Ambient
formaldehyde detection with a laser spectrometer based on difference-frequency
generation in PPLN. Appl. Phys. B , 72:947-952, 2001.
140. G. Berden, R. Peeters, and G. Meijer. Cavity ring-down spectroscopy: Experimental
schemes and applications. Int. Rev. Phys. Chem. , 19(4):565-607, 2000.
141. M.D. Wheeler, S.M. Newman, A.J. Orr-Ewing, and M.N.R. Ashfold. Cavity
ring-down spectroscopy. J. Chem. Soc., Faraday Trans. , 94(3):337-351, 1998.
142. M. Mazurenka, A.J. Orr-Ewing, R. Peverall, and G.A.D. Ritchie. Cavity ring-down
and cavity enhanced spectroscopy using diode lasers. Annu. Rep. Prog. Chem., Sect.
C , 101:100-142, 2005.
143. A. Campargue, D. Romanini, and N. Sadeghi. Measurement of SiH 2 density in a
discharge by intracavity laser absorption spectroscopy and CW cavity ring-down
spectroscopy. J. Phys. D Appl. Phys. , 31:1168-1175, 1998.
Search WWH ::




Custom Search