Chemistry Reference
In-Depth Information
TABLE 3.2
Diffusion Lengths for Different Geometries of the
Diffusion Problem
Symmetry of the Problem
(
1
/)
2
Cylinder (radius R , length L )
( 2.4 / R )
2
+ ( π / L )
2
Sphere (radius R )
( π / R )
2
Parallelepiped (side lengths L 1 , L 2 , L 3 )
( π / L 1 )
2
+ ( π / L 2 )
2
+ ( π / L 3 )
2
Source: Raizer, Y.P., Gas Discharge Physics , Springer-Verlag, Berlin,
Germany, 1991.
By use of the ambipolar diffusion coefficient for a nitrogen plasma, discussed
above the typical diffusion time constant at a total pressure of 100 Pa (1 mbar) in a
spherical geometry with radius R
10 2 s.
Inthecaseofthree-componentplasmas,consistingofpositiveandnegativeionsas
well as electrons, three ambipolar diffusion coefficients D a + , D a , and D ae are defined
by use of the condition for quasi-neutrality n + =
=
20 cm of the plasma vessel gets about 2.4
·
n e +
n and the electronegativity
α
=
n /
n e [4]
b e D + +
b + D e (
1
+
α
)(
n e /
n + ) +
b D + α
+
b + D (
1
+
α
)(
n /
n + )
D a + =
,
b e +
b α
+
b + (
1
+
α
)
(3.55)
b + D e (
1
+
α
) +
b e D + (
n + /
n e ) +
b D e α
b e D (
n /
n e )
D ae =
,
(3.56)
b e +
b α
+
b + (
1
+
α
)
b + D (
1
+
α
) +
b D + (
n + /
n ) +
b e D
b D e α
(
n e /
n )
D a =
.
(3.57)
b e +
b α
+
b + (
1
+
α
)
These equations for the ambipolar diffusion coefficient can be approximated to
specific cases, e.g., for weak, strong, or very strong electronegativity α.
3.1.6 M OTION OF C HARGED S INGLE P ARTICLE IN H OMOGENEOUS
M AGNETIC F IELD
3.1.6.1 Cyclotron Motion
Firstly, we consider the motion of a single particle (charge q and mass m )
with a component of velocity perpendicular to a homogeneous magnetic field
B
=
B
·
e z =
const .
˙
v x
˙
v x
v y
v z
0
0
B
+
v y ·
B
=
×
=
.
m
·
v y
˙
q
·
q
·
v x ·
B
(3.58)
v z
0
 
Search WWH ::




Custom Search