Civil Engineering Reference
In-Depth Information
Improvement of the mechanical properties of sheets and their applicability to diaphragms
of electrostatic transducers. J. Mater. Sci . 25 , 2997 - 3001 ( 1990 ).
30. J. H. Jeona , I. K. Oha , C. D. Keea , and S. J. Kim , Bacterial cellulose actuator with electrically
driven bending deformation in hydrated condition. Sens. Actuat. B , 146 , 307 - 313 ( 2010 ).
31. Z. Cai, and J. Kim, Bacterial cellulose/poly (ethylene glycol) composite: Characterization
and i rst evaluation of biocompatibility. Cellulose 17 , 83 - 91 ( 2010 ).
32. E. Sourty, D. H. Ryan, and R. H. Marchessault, Characterization of magnetic membranes
based on bacterial and man-made cellulose. Cellulose 5 , 5 - 17 ( 1998 ).
33. E. Sourty, D. H. Ryan, and R. H. Marchessault, Ferrite-loaded membranes of microi brillar
bacterial cellulose prepared by in situ precipitation. Chem. Mater . 10 , 1755 - 1757 ( 1998 ).
34. Y. Zheng , J. Yang , W. Zheng , X. Wang , C. Xiang , L. Tang , W. Zhang , S. Chen , and H. Wang ,
Synthesis of l exible magnetic nanohybrid based on bacterial cellulose under ultrasonic
irradiation . Mater. Sci. Eng. C 33 , 2407 - 2412 ( 2013 ).
35. C. Katepetch, and R. Rujiravanit, Synthesis of magnetic nanoparticle into bacterial cellulose
matrix by ammonia gas-enhancing in situ co-precipitation method. Carbohydr. Polym . 86 ,
162 - 170 ( 2011 ).
36. W. Zhang, S. Chen, W. Hu, B. Zhou, Z. Yang, N. Yin, and H. Wang, Facile fabrication of
l exible magnetic nanohybrid membrane with amphiphobic surface based on bacterial cel-
lulose . Carbohydr. Polym . 86 , 1760 - 1767 ( 2011 ).
37. J. A. Marins, B. G. Soares, H. S. Barud, and S. J. L. Ribeiro, Flexible magnetic membranes
based on bacterial cellulose and its evalution as electromagnetic interference shielding
material . Mater. Sci. Eng. C 33 , 3994 - 4001 ( 2013 ).
38. R. T. Olsson, M. A. S. Azizi Samir, G. S. Alvarez, L. Belova, V. Strom, L. A. Berglund, O.
Ikkala, J. Nogues, and U. W. Geddel, Making l exible magnetic aerogels and stif magnetic
nanopaper using cellulose nanoi brils as templates. Nat. Nanotechnol . 5 , 584 - 588 ( 2010 ).
39. S. Vitta, M. Drillon, and A. Derory, Magnetically responsive bacterial cellulose: Synthesis
and magnetic studies. J. Appl. Phys . 108 , 053905 1 ( 2010 ).
40. V. h iruvengadam, and S. Vitta, Ni/Bacterial cellulose nanocomposite, a magnetically active
inorganic-organic hybrid gel. RSC Adv . 3 , 12765 - 12773 ( 2013 ).
41. R. Zhang, D. Shuai, K. A. Guy, J. R. Shapley, T. J. Strathmann, and C. J. Werth, Elucidation of
nitrate reduction mechanisms on a Pd-In bimetallic catalyst using isotope labeled nitrogen
species . ChemCatChem 5 , 313 - 321 ( 2013 ).
42. D. Sun, J. Yang, J. Li, J. Yu, X. Xu, and X. Yang, Novel Pd-Cu/bacterial cellulose nanoi -
bers: Preparation and excellent performance in catalytic denitrii cation. Appl. Surf. Sci . 256 ,
2241 - 2244 ( 2010 ).
43. J. Yang, J. Yu, J. Fan, D. Sun, W. Tang, and X. Yang, Biotemplated preparation of CdS nanopar-
ticles/bacterial cellulose hybrid nanoi bers for photocatalysis application. J. Hazard. Mater .
189 , 377 - 383 ( 2011 ).
44. W. Hu, S. Chen, B. Zhou, and H. Wang, Facile synthesis of ZnO nanoparticles based on
bacterial cellulose. Mater. Sci. Eng. B 170 , 88 - 92 ( 2010 ).
45. D. Zhang, and L. Qi, Synthesis of mesoporous titania networks consisting of anatase nanow-
ires by templating of bacterial cellulose membranes. Chem. Commun . 21 , 2735 - 2737 ( 2005 ).
46. D. Mullera, C. R. Rambo, L. M. Portoc, W. H. Schreiner, and G. M. O. Barra, Structure
and properties of polypyrrole/bacterial cellulose nanocomposites. Carbohydr. Polym . 94 ,
655 - 662 , ( 2013 ).
47. D. Muller, J. S. Mandelli, J. A. Marins, B. G. Soares, L. M. Porto, C. R. Rambo, and G. M. O.
Barra, Electrically conducting nanocomposites: Preparation and properties of polyaniline
(PAni)-coated bacterial. Cellulose 19 , 1645 - 1654 ( 2012 ).
Search WWH ::




Custom Search