Civil Engineering Reference
In-Depth Information
( a )
( b )
400
14
( c )
( d )
350
300
pH = 5.05
pH = 5.51
pH = 6.05
pH = 6.50
pH = 6.96
pH = 7.46
pH = 8.03
12
10
250
200
150
100
50
500
8
6
4
2
0
3
456789
pH
520
540
Wavelength / nm
460
580
600
Figure 15.18 (a) AFM image of FITC/RBITC CNCs (scan size 5 mm). (b) Suspensions of pH-responsive
CNCs (0.1 wt%) at increasing pH values. (c) Emission spectra of pH-responsive CNCs at dif erent pH
values (λ ex = 490 nm and 540 nm for FITC and RBITC, respectively). (d) Plot of intensity ratios vs pH
values [243] .
renewability provide potential "nanostrength" to the composites depending on mor-
phology, aspect ratio, processing, functionalization, and polymer matrices. h ese prop-
erties of CNCs expand their possibility as nanoreinforcement for value-added products.
h e extraction of CNCs by using acid hydrolysis, characterization methods, properties
and behavior, drying processes, processing approaches, functionalization and poten-
tial applications of CNCs-reinforced composites discussed in this chapter will provide
insight into the future developments and applications of CNCs-based nanocomposites
in the industrial and biomedical sectors.
Acknowledgements
h e authors thank the Ministry of Human Resource Development (MHRD), New
Delhi, and Indian Institute of Technology Roorkee (IIT Roorkee) for providing fund-
ing to one of the authors, Mr. Anuj Kumar, and the facility for advanced research in the
i eld of CNCs-reinforced biocomposites.
References
1. D. Klemm, B. Heublein, H. P. Fink, and A. Bohn. Angew . Chem. Int . Ed. 44 , 3358 ( 2005 ).
2. M. Samir, F. Alloin, J. Y. Sanchez, and A. Dufresne. Biomacromolecules 6 , 612 ( 2005 ).
3. O. Faruka, A. K. Bledzki, H. P. Fink, and M. Sain. Prog . Polym. Sci . 37 , 1552 ( 2012 ).
Search WWH ::




Custom Search