Civil Engineering Reference
In-Depth Information
87. M. T. Cidade, M. Fernández, and A. Santamaria, Pressure-volume-temperature results
and pressure dependency on the viscosity of three liquid crystalline cellulose derivatives.
Liq. Cryst . 39 , 115 - 120 ( 2012 ).
88. N. Mori , M. Morimoto , and K. Nakamura , Hydroxypropylcellulose i lms as alignment lay-
ers for liquid crystals. Macromolecules 32 , 1488 - 1492 ( 1999 ).
89. D. G Gray, Chiral nematic ordering of polysaccharides. Carbohydr. Polym . 25 , 277 - 284
( 1994 ).
90. M. H. Godinho, D. Filip, I. Costa, A.-L. Carvalho, J. L. Figueirinhas, and E. M. Terentjev,
Liquid crystalline cellulose derivative elastomer i lms under uniaxial strain. Cellulose 16 ,
199 - 205 ( 2009 ).
91. S. Dayan, J. M. Gilli, and P. Sixou, Rheological studies of cellulose derivatives solution. J.
Appl. Polym. Sci . 28 , 1527 - 1534 ( 1983 ).
92. V. G. Kulichikhin, V. V. Makarova, M. Yu. Tolstykh, and G. B. Vasil'ev, Phase equilibria in
solutions of cellulose derivatives and the rheological properties of solutions in various phase
states Polym. Sci. Series A 52 , 1196 - 1208 ( 2010 ).
93. N. Grizzuti, S. Cavella, and P. Cicarelli, Transient and steady-state rheology for a liquid
crystalline hydroxypropylcellulose solution. J. Rheol . 34 , 1293 - 1310 ( 1990 ).
94. F. Fried and P. Sixou, “Bands” and “Torsads” Textures in i lms and threads of hydroxypro-
pyl cellulose. Mol. Cryst. Liq. Cryst . 158B , 163 - 184 ( 1988 ).
95. E. Peuvrel and P. Navard, Band textures of liquid crystalline polymers in elongational
l ows. Macromolecules 24 , 5683 - 5686 ( 1991 ).
96. L. M. Walker, W. A. Kernick, and N. J. Wagner, In situ analysis of the defect texture in liq-
uid crystal polymer solutions under shear. Macromolecules 30 , 508 - 514 ( 1997 ).
97. S. S. Patnaik, T J. Bunning, and W. W. Adams, Atomic force microscopy and high-resolu-
tion scanning electron microscopy study of the banded surface morphology of hydroxy-
propylcellulose thin i lms. Macromolecules 28 , 393 - 395 ( 1995 ).
98. E. M. Andresen and G. R. Mitchell, Orientational behaviour of thermotropic and lyotropic
liquid crystal polymer systems under shear l ow. Europhys. Lett . 43 , 296 - 301 ( 1998 ).
99. L. Yan, Q. Zhu, and T. Ikeda, Alignment behaviour of liquid crystals on ethyl cellulose
i lms with banded-texture structure. Polym. Int . 52 , 265 - 268 ( 2003 ).
100. J. B. Riti, M. T. Cidade, M. H. Godinho, A. F. Martins, and P. Navard, hear induced textures
of thermotropic acetoxypropylcellulose. J. Rheol . 41 , 1247 - 1260 ( 1997 ).
101. P. Zugenmaier, Polymer solvent interaction in lyotropic liquid crystalline cellulose deriva-
tives systems , in Cellulosic polymers, blends and composite , Chapter 4 , R. D. Gilbert (Ed.) ,
pp. 71-94, Hanser, Munich. (1994).
102. S. Zhu, Y. Wu, Q. Chen, Z. Yu, C. Wang, S. Jin, Y. Ding, and G. Wu, Dissolution of cellulose
with ionic liquids and its application: A mini-review. Green Chem . 8 , 325 - 327 ( 2006 ).
103. S. Onogi and T. Asada, „Rheology and Rheo-Optics of Polymer Liquid Crystals”, in
Rheology, G. Astarita, G. Marucci, and L. Nicolais (Eds.), Vol., pp. 127-146, Plenum Press,
New York . ( 1980 ).
104. A. I. Cosutchi, C. Hulubei, I. Stoica, and S. Ioan, Morphological and structural-rheological
relationship in epiclon-based polyimide/hydroxypropylcellulose blend systems. J. Polym.
Res . 17 , 541 - 550 ( 2010 ).
105. O. Matveichuk, “Constitutive modeling of concentrated solutions of main-chain liquid
crystalline polymers”, h esis, Eindhoven University of Technology in the Centre for Analysis
Scientii c Computing and Applications , Netherlands . ( 2013 ).
106. N. Grizziti, S. Cavella and P. Cicarelli, Transient and steady-state rheology of a liquid crys-
talline hydroxypropylcellulose solution. J. Rheol . 34 , 1293 - 1310 ( 1990 ).
Search WWH ::




Custom Search