Civil Engineering Reference
In-Depth Information
that changes the hydrogen bonding between the whiskers within the polymer matrix,
and at the same time presumably also impacts the whisker/matrix interactions.
10.5
Conclusion
For a i ber-reinforced composite, the i nal performance depends on i ber aspect ratio,
surface area and its uniform dispersion in the polymer matrix. h e fact that the cel-
lulosic nano/microcomposites show superior performance even at very low load-
ing makes them a desirable candidate in composite industry. However, retaining the
nanodimension and uniform dispersability in polar polymer matrix, especially in non-
polar matrix, is a huge challenge. Many methods have been adopted to overcome these
issues. Extensive research in this i eld in the last few years has given a clear idea on the
techniques to be adopted to attain stable nanoi bers. Pretreatment of i bers, such as dif-
ferent physical and chemical techniques, are found to improve i ber-matrix interaction.
h ese methods combined with proper processing techniques can result in the develop-
ment of cellulose nano/microcomposites with excellent properties.
References
1. A. F. Turbak, F. W. Snyder, and K. R. S Berg. J. Appl. Polym . Sci . 37 , 815 , 1983 .
2. I. Siro , and D. Plackett . Cellulose 17 , 459 ( 2010 ).
3. N. Lavoine , I. Desloges , A. Dufresne , J. Bras . Carbohyd . Polym . 90 , 735 ( 2012 ).
4. S. Kamel . Express Polym. Lett . 1 , 546 ( 2007 ).
5. S. Eichhorn , A. Dufresne , M. Aranguren , N. Marco Vich , J. Capodona , S. Rawan , M.
Weder , W. h ielemans, M. Roman, S. Renneckar, W. Gindl, and S. Veigel. J . Mater. Sci . 45 ,
415 ( 2010 ).
6. H. El-Saied, A. H. Basta, and R. H. Gobran. Polym . Plast. Technol . 43 , 797 ( 2004 ).
7. S. Kalia, A. Dufresne, B. M. Cherian, B. S. Kaith, L. Averous, J. Njuguna, and E. Nassiopoulos.
J . Polym. Sci . 2011 , 1 ( 2011 ).
8. M. A. S Azizi Samir, F. Alloin, and A. Dufresne. Biomacromolecules 6 , 612 ( 2005 ).
9. J. Zhang , and J. Zhang , Acta Polymer . Sinica , 1375 ( 2010 ).
10. H. P. S. Abdul Khalil, A. H. Bhat, and A. F. IreanaYusra. Carbohyd . Polym . 87 , 963 ( 2012 ).
11. D. Klemm , F. Kramer , S. Moritz , T. Lindstrom , M. Ankerfors , D. Gray , and A. Dorris,Nano
celluloses: A new family of nature-based materials. Angew. Chem. Int . Ed. 50 , 5438 ( 2011 ).
12. D. F. Williams, On the mechanisms of biocompatibility. Biomaterials 29 , 2941 ( 2008 ).
13. A. C. O Sullivan. Cellulose 4 , 173 ( 1997 ).
14. M. Samir , F. Alloin , and A. Dufresne . Biomacromolecules 6 , 612 ( 2005 ).
15. I. Gabrielii, Gatenholm, W. G. Glasser, R. K. Jain, and L. Kenne. Carbohyd . Polym . 43 , 367
( 2000 ).
16. H. V. Scheller , and P. Ulvskov 61 , 263 ( 2010 ).
17. X. Li , and X. Pan . J . Biobased Mater. Bioener . 4 , 289 ( 2010 ).
18. D. D. Stokke, and D. J. Gardner. J . Vinyl Addi. Technol . 9 , 96 ( 2003 ).
19. M. A. Karaaslan, M. A. Tshabalala, D. J. Yelle, and G. Buschle-Diller. Carbohyd . Polym . 86 ,
192 ( 2011 ).
20. E. Adler, Lignin chemistry - past, present and future. Wood Sci. Technol . 11 , 169 ( 1977 ).
21. A. K. Mohanty, M. Misra, and G. Hinrichsen. Macromol . Mater. Eng . 276 , 1 ( 2000 ).
Search WWH ::




Custom Search