Information Technology Reference
In-Depth Information
References
Batoz, J., Bathe, J., and Ho, L., 1980, A study of three-node triangular plate bending elements, Int. J.
for Numerical Methods in Engineering , Vol. 15, pp. 1771-1812.
Bazeley, G.P., Cheung, Y.K., Irons, B.M., and Zienkiewicz, O.C., 1965, Triangular elements in bending-
conforming and non-conforming solutions, Proc. Conf. Matrix Methods Struct. , Air Force Institute
of Technology, Wright-Patterson Air Force Base, Dayton, OH.
Kirchhoff, G., 1850, Uber das Gleichgewicht und die Bewegung einer elastischen Scheibe, Crelles J. ,
Vol. 40, pp. 51-88.
Mindlin, R.D., 1951, Influence of rotary inertia and shear on flexural motions of isotropic elastic plates,
J. Appl. Mech. , Vol. 18, pp. 31-38.
Pian, T.H.H., and Tong. P., 1969, Basis of finite element methods for solid continua, Int. J. for Numerical
Methods in Engineering , No. 1, pp. 3-28.
Pilkey, W.D., 1994, Formulas for Stress, Strain, and Structural Matrices , Wiley, New York.
Pilkey, W.D., 2002, Analysis and Design of Elastic Beams, Computational Methods , Wiley, New York.
Poisson, S.D., 1829, Memoire sur l'equilibre et le mouvement des corps elastiques, Memoirs of the
Academy , Paris, Vol. 8, pp. 357-570 and 623-627.
Reissner, E., 1945, The effect of transverse shear deformation on the bending of elastic plates,
J. Appl. Mech. , Vol. 12, pp. A69-77.
Thomson, W. (Lord Kelvin), and Tait, P.G., 1883, Treatise on Natural Philosophy , Cambridge University
Press, London.
Todhunter, I. and Pearson, K., 1886, A History of the Theory of Elasticity , Cambridge University Press,
London.
Zienkiewicz, O.C., 1977, The Finite Element Method , 3rd ed., McGraw-Hill, New York.
Zienkiewicz, O.C. and Taylor, R.L., 2000, The Finite Element Method, Vol. 2: Solid Mechanics , 5th ed.,
Butterworth, Heinemann, London.
Problems
In-Plane Deformation
13.1 Given the relationships x
=
r cos
φ
,y
=
r sin
φ
, use the Jacobian to show that
r
r
∂φ
1
r
∂φ
1
r
x =
cos
φ
,
y =
sin
φ
,
x =−
sin
φ
,
y =
cos
φ
Hint:
Form
cos
x
r
y
φ
sin
φ
r
∂φ
r
x
x
x
=
=
=
J
r sin
φ
r cos
φ
y
∂φ
x
∂φ
y
y
y
Then
J 1
cos
r
φ
sin
φ
x
r
∂φ
r
∂φ
=
=
r
sin
φ
cos
φ
y
13.2 Show that Eq. (13.11a) corresponds to the conditions of equilibrium for the element
of Fig. 13.3.
13.3 Find the radial displacements and internal forces in a circular disk subject to a radial
pressure of magnitude p 0 (force/length) on the inner periphery at r
=
a
.
The outer
=
rim at r
b is free of loading.
Search WWH ::




Custom Search