Information Technology Reference
In-Depth Information
FIGURE 12.8
Representation of the cross-sectional characteristics for principal axes.
The principal moments of inertia and I ω ω are shown in Fig. 12.8.
The quantity J t in Eq. (12.17) can be expressed as
y 2
dA
∂ω
2
∂ω
2 dA
z ∂ω
dA
z ∂ω
y ∂ω
y ∂ω
z 2
=
+
+
y
+
+
+
y
J t
z
y
z
z
A
A
A
(12.23)
The first integral in Eq. (12.23) is the torsional constant J given in Chapter 1, Eq. (1.154).
The second term can be processed as
∂ω
2
∂ω
2 dA
dA
z 2 dA
2
2
ω ∂ω
+
ω ∂ω
y 2 +
ω
ω
+
=
A ω
y
z
y
y
z
z
A
A
From Gauss's integral theorem in Appendix II, Eq. (II.8),
dA
∂ω
z a z dS
ω ∂ω
+
ω ∂ω
+ ∂ω
=
S ω
y a y
y
y
z
z
A
For a two-dimensional problem, the volume V in Eq. (II.8) becomes the area A . The third
integral of Eq. (12.23) can be written as
z ∂ω
dA
dA
y ∂ω
ω) +
y
=
y (
z
z (
y
ω)
=
S ω(
za y
ya z
)
dS
z
A
A
Here Gauss's integral theorem is used again. Thus, the expression of J t appears as
z 2 dA
∂ω
ya z dS
2
2
y 2 +
ω
ω
y a y + ∂ω
J t =
J
A ω
+
S ω
z a z +
za y
Search WWH ::




Custom Search