Information Technology Reference
In-Depth Information
zdA
zy dA
zz dA
dA
κ z +
κ y +
z
ω
κ ω
+
E
δκ
y
A
A
A
A
I z
I zy
I zz =
I
I z ω
dA
ydA
zdA
dA
A ω
A ω
κ z +
A ω
κ y +
A ωω
κ ω
+
E
δκ ω
I
I
I
I
ω
ω
y
ω
z
ωω
z
2
2 dA
G
+ ∂ω
+ ∂ω
+
y
γ tP δγ tP
+
dx
.
(12.16)
y
z
A
J t
This provides definitions of the cross-sectional characteristics for arbitrary coordinate axes
y and z . Thus
dA [ L 2 ]
ydA [ L 3 ]
zdA [ L 3 ]
A
=
I y
=
I z
=
A
A
A
dA [ L 4 ]
yz dA [ L 4 ]
dA [ L 5 ]
I
ω =
A ω
I yz =
I y ω =
y
ω
A
A
(12.17)
dA [ L 5 ]
y 2 dA [ L 4 ]
z 2 dA [ L 4 ]
I z ω =
z
ω
I yy =
I zz =
A
A
A
z
2
2 dA [ L 4 ]
+ ∂ω
+ ∂ω
2 dA [ L 6 ]
I
ωω =
A ω
J t
=
+
y
y
z
A
where the dimensions are in brackets [ ], with L indicating length. These cross-sectional
properties are displayed in Fig. 12.6a [Bornscheuer, 1952].
Special cross-sectional axes are of interest. If the cross-sectional coordinates y, z are the
centroidal axes y C ,z C , the first moments of the areas are zero, i.e.,
I y =
0
y
=
y
y C
y C =
I y /
A
(12.18a)
I z =
0
z
=
z
z C
z C =
I z /
A
.
The corresponding
ω
coordinate is
ω C , and Eq. (12.18a) is supplemented with the condition
I
ω =
0
ω = ω ω C
ω C =
I
ω /
A
.
(12.18b)
These relations substituted into Eq. (12.17) lead to
I y I z
A
I y I
A
[ L 4 ]
[ L 5 ]
I y z =
I yz
I y ω =
I y ω
I z I A
I y I y
A
[ L 5 ]
[ L 4 ]
I z ω =
I z ω
I y y
=
I yy
(12.18c)
I z I z
A
I
I
A
ω
[ L 4 ]
[ L 6 ]
I z z
=
I zz
I
ω ω =
I
ωω
Search WWH ::




Custom Search