Information Technology Reference
In-Depth Information
A σ x dA
u
=
δ
Axial Force
x
N
A σ x ydA
A σ x zdA
dA
δθ z +
δθ y +
δψ
+
A σ x ω
Moments
M z
M y
M
ω
(Bimoment)
A τ xy dA
A τ xz dA
δ(v θ z ) +
δ(w + θ y )
+
Shear Forces
V y
V z
xz y
xy z
dA
∂ω
+ ∂ω
Primary Torsional
Moment
δφ x
+
τ
τ
z
y
A
M tP
Secondary
Torsional Moment
(from warping
shear)
dA
dx
τ xy ∂ω
y + τ xz ∂ω
δ(φ x + ψ)
+
(12.9)
z
A
M tS
The definitions of the stress resultants (internal forces and moments) have been identified
in Eq. (12.9) as
N
=
A σ
x dA,
M z
=−
A σ
x y dA,
M y
=
A σ
x zdA
M
ω =
A σ x ω
dA,
V y =
A τ xy dA,
V z =
A τ xz dA
xz y
xy z
dA
∂ω
+ ∂ω
M tP
=
τ
τ
z
y
A
dA
xy ∂ω
xz ∂ω
=
τ
y + τ
M tS
z
A
Thus, Eq. (12.9) leads to the internal virtual work expression for the bar
x {
δ
W i
=
N
δ +
M z
δκ
+
M y
δκ
+
M ω δκ ω +
V y
δγ
+
V z
δγ
+
M tP
δγ
+
M tS
δγ
}
dx
z
y
y
z
tP
tS
-------- -------- ----------
(12.10)
The stress resultants and corresponding strains are summarized in the following table:
Stress
Resultant
Strain
u
Longitudinal
N
=
κ z = θ z ,
κ y = θ y
Bending
M z ,M y
γ tP = φ x ,
γ tS = φ x + ψ
κ ω = ψ
Torsion
M tP ,M tS ,M ω
,
γ y = v θ z ,
γ z = w + θ y
Direct Shear
V y ,V z
Simplifying Kinematic Assumptions
Bending: Bernoulli's Hypothesis
Neglecting the transverse shear strains, i.e.,
γ
= v θ
=
0
y
z
(12.11)
= w + θ
γ
=
0
z
y
Search WWH ::




Custom Search