Information Technology Reference
In-Depth Information
10.2 Find the lumped mass matrices (element and global) of the frame in Problem 10.1
with and without rotary inertia.
Answer: Global matrix, based on physical lumping of mass at the ends of two
elements, without rotary inertia M
10 3 diag
1
.
259
×
(
220110
)
where V
=
c ] T
10 3 diag
[ U Xb U Zb
b U Xc U Zc
with rotary inertia M
1
.
259
×
(
2217118
.
5
)
10.3 Use Guyan reduction to condense out the DOF related to the rotation for the frame
in Problem 10.1. Find the stiffness, consistent, and lumped mass matrices.
Answer:
[ U Xb
U Zb
U Xc
U Zc ]
1
.
2065
0
.
0026
0
.
0017
0
0
.
0026
1
.
2117
0
.
0026
1
.
2048
10 5
K
=
8
.
3
×
0
.
0017
0
.
0026
0
.
0017
0
0
1
.
2048
0
1
.
2048
315
.
3469
35
.
8776
64
.
6531
0
= ρ
420
35
.
8776
267
.
1020
9
.
1224
70
.
0000
M
64
.
6531
9
.
1224
115
.
3469
0
0
70
.
0000
0
140
.
0000
Lumped mass matrix without rotary inertia:
2
.
0572
0
0
0
0
2
.
0572
0
0
10 3
M
=
1
.
259
×
0
0
1
.
0286
0
0
0
0
1
.
0286
Lumped mass matrix with rotary inertia:
2
.
2321
0
.
0159
0
.
1749
0
0
.
0159
2
.
2003
0
.
0159
0
10 3
M
=
1
.
259
×
0
.
1749
0
.
0159
1
.
2035
0
0
0
0
1
.
0286
10.4 Use three point Gauss quadrature to find the mass matrix for beams using the shape
functions of Eq. (10.8)
Answer:
444
62
156
38
2
2
ρ
1200
62
11
38
9
m i
=
156
38
444
62
2
2
38
9
62
11
10.5 Approximate mass matrices can be obtained in many ways. Show that the higher
order matrix of Eq. (10.15) can be produced by e mpl oying a special numerical inte-
gration scheme with the integration points at
± 2
3 and the weights equal to one in
the integral for the element mass matrix of Eq. (10.5).
/
Hint:
Use the shape functions of Chapter 4, Example 4.1.
Search WWH ::




Custom Search