Information Technology Reference
In-Depth Information
As a second possibility, choose a trial solution with
2
3
N u 1 (ξ ) =
ξ
)
3
4
N u 2 (ξ ) =
ξ
)
(14)
4
5
N u 3
(ξ ) =
ξ
)
Here, N u 1 is the same as the previous case, the combination b 1 =
b 2 =
b 3 =
0 ,b 4 =
1 , and
b 5 =−
1 substituted in (4) leads to N u 2 , and N u 3 is a higher order polynomial which satisfies
the required displacement boundary conditions. Our trial deflection is
w
1
2
3
3
4
4
5
w
w(ξ) =
[
ξ
ξ
ξ
)
]
(15)
2
w
3
For this assumption, we obtain
2
2
3
2
3
4
4
24
ξ +
36
ξ
12
ξ
60
ξ
+
72
ξ
24
ξ
112
ξ
+
120
ξ
L 4 1
0
EI
2
3
4
3
4
5
k u =
36
ξ
144
ξ
+
144
ξ
72
ξ
264
ξ
+
240
ξ
dx
(16)
4
5
6
Symmetric
144
ξ
480
ξ
+
400
ξ
dx
/
1
1
1
30
ξ
2
ξ
3
N u dx
ξ
3
ξ
4
/
p u
=
p z (
x
)
=
p 0
(
1
ξ)
=
p 0 L
1
60
(17)
0
0
4
5
ξ
ξ
1
/
105
The equations for
w are
44
4
w
1
/
30
1
=
424
/
5 6
/
5
w
p 0 L
1
/
60
EI
L 3
2
(18)
w
/
426
/
5
208
/
35
1
105
3
k u
w
=
p u
which provides the solution
p 0 L 4
120 EI [4
T
w
=
41
(19)
Let us compare both of the above results with the exact solution.
A. Exact solution:
p 0 L 4
120 EI (
2
3
4
5
w(ξ) =
ξ
ξ
+
ξ
ξ
)
4
8
5
B. Trial Deflection with m
=
2:
p 0 L 4
120 EI (
2
3
4
w(ξ) =
3
.
5
ξ
6
ξ
+
2
.
5
ξ
)
C. Trial Deflection with m
=
3:
p 0 L 4
120 EI (
2
3
4
5
w(ξ) =
4
ξ
8
ξ
+
5
ξ
ξ
)
Search WWH ::




Custom Search