Information Technology Reference
In-Depth Information
TABLE 6.7
Gaussian Quadrature Formulas
Gaussian Quadrature of F
(ξ )
over the interval [
1 , 1]:
1
ξ = i
W ( n )
i
1 F
(ξ )
d
F
i )
n
=
Number of integration points
W ( n )
i
n
Configuration
Locations
ξ i
Error R n
1
3 F ( 2 ) (
1
a
0
2
r
)
1
135 F ( 4 ) (
1
2
a
/
3
1
r
)
1
b
/
3
1
3
a
/
5
5/9
15750 F ( 6 ) (
1
3
b
0
8/9
r
)
3
/
c
5
5/9
a
0.86113 63116
...
0.34785 48451
...
4
b
0.33998 10436
...
0.65214 51549
...
3472875 F ( 8 ) (
1
c
0.33998 10436
...
0.65214 51549
...
r
)
d
0.86113 63116
...
0.34785 48451
...
a
0.90617 98459
...
0.23692 68851
...
b
0.53846 93101
...
0.47862 86705
...
128
225
1
10 9 F ( 10 ) (
5
c
0
r
)
1
.
2377
×
d
0.53846 93101
...
0.47862 86705
...
e
0.90617 98459
...
0.23692 68851
...
F ( n ) (
r
)
is the n th derivative with respect to
ξ
and r is a point in [
1 , 1].
The n Gauss integration points of Eq. (6.123) are found by solving P n (ξ ) =
0 for its roots
ξ i ,i
=
0 , 1 ,
...
,n
1
.
The weighting functions are given by
(
ξ
i
)
2
1
W ( n )
i
=
=
...
i
1 , 2 ,
,n
(6.124)
] 2
[ nP n 1
)
i
Gaussian quadrature is the most frequently used integration procedure in finite element
calculations because for the same number of integration points, the accuracy is better than
that of the Newton-Cotes method.
EXAMPLE 6.11 Determination of Integration Points and Weighting Coefficients
Establish the integration points and weighting coefficients for Gaussian quadrature in the
domain [
.
First find the integration points. For n
1 , 1] if n
=
2
=
χ(ξ) = ξ
)(ξ ξ
).
2 ,
Use Eq.(6.123)
1
2
1
1
1 ξ
)(ξ ξ
)
d
ξ =
0 ,
1 ξ
)(ξ ξ
d
ξ =
0
(1)
1
2
1
2
Upon integration, it follows that
ξ
ξ
=−
/
ξ
+ ξ
=
1
3 ,
0
(2)
1
2
1
2
Search WWH ::




Custom Search