Information Technology Reference
In-Depth Information
Substitution of x ,y ,z
from Eq. (1.9) into Eq. (1.8) gives
ds 2
dx 2
dy 2
dz 2
du 2
2
2
=
+
+
+
2 du dx
+
2 d
v
dy
+
2 d
w
dz
+
+
d
v
+
d
w
(1.11)
or, using Eq. (1.7),
ds 2
ds 2
du 2
2
2
=
(
+
v
+
w
) +
+
v
+
w
2
du dx
d
dy
d
dz
d
d
(1.12)
Substitution of the total differentials of Eq. (1.10) into Eq. (1.12) leads to
2
2 ] dx 2
1
2 [
ds 2
ds 2
2
2
=
x u
+
(∂
x u
)
+ (∂
v)
+ (∂
w)
x
x
2
2 ] dy 2
1
2 [
2
2
+
v +
(∂
y u
)
+ (∂
v)
+ (∂
w)
y
y
y
2
2 ] dz 2
1
2 [
2
2
+
w +
(∂
z u
)
+ (∂
v)
+ (∂
w)
z
z
z
+
2
(∂ x v + y u
+ x u
y u
+ x v∂ y v + x w∂ y w)
dx dy
+
2
(∂ x w + z u
+ x u
z u
+ x v∂ z v + x w∂ z w)
dx dz
+
2
(∂ y w + z v + y u
z u
+ y v∂ z v + y w∂ z w)
dy dz
(1.13)
Note that ds 2
ds 2 is zero if no relative displacement occurs between the points A and B
as they move to A and B . This would correspond to a rigid body motion. For ds 2
ds 2 not
equal to zero, the line element ds has changed in length, i.e., the solid is strained. Therefore
ds 2
ds 2 can be chosen as an appropriate measure of deformation of the solid. To define
the strain components we write Eq. (1.13) as
ds 2
ds 2
x dx 2
y dy 2
z dz 2
=
2
+
2
+
2
+
4
xy dx dy
+
4
xz dx dz
+
4
yz dy dz
(1.14)
where
2
2
∂v
2
∂w
=
u
1
2
u
x +
+
+
(1.15a)
x
x
x
x
2
2
∂v
2
∂w
= ∂v
1
2
u
y +
+
+
(1.15b)
y
y
y
y
2
2
∂v
2
∂w
z = ∂w
1
2
u
z +
+
+
(1.15c)
z
z
z
∂v
1
2
x +
u
y +
u
x
u
y + ∂v
x ∂v
y + ∂w
x ∂w
xy =
(1.15d)
y
∂w
1
2
x +
u
z +
u
x
u
z + ∂v
x ∂v
z + ∂w
x ∂w
xz =
(1.15e)
z
∂w
1
2
y + ∂v
z +
u
y
u
z + ∂v
y ∂v
z + ∂w
y ∂w
=
(1.15f)
yz
z
which can be abbreviated with the help of the notation of Section 1.1
1
2 (
=
u i,k
+
u k,i
+
u l,i u l,k
)
(1.16)
ik
Search WWH ::




Custom Search