Information Technology Reference
In-Depth Information
TABLE 4.4
Stiffness Matrix for a Beam Element
V a
M a
V b
M b
V a
M a
V b
M b
k 11
k 12
k 13
k 14
w a
θ a
w b
θ b
k 21
k 22
k 23
k 24
=
k 31
k 32
k 33
k 34
k 41
k 42
k 43
k 44
P i 0
p i
=
k i
v i
Definitions:
k 11 =
(
e 2 η
e 4 )(
e 1 + ζ
e 3 ) + λ
/
Sign Convention 2
[
e 3 e 4 ] EI
λ =
/
k 12 =
[ e 3 (
e 1 η
e 3 )
e 2 (
e 2 η
e 4 )
/
k
EI
] EI
η =
k
/
k s GA
k 13 =− (
e 2 η
e 4 )
EI
/
k )/
ζ = (
N
EI
k 14 =−
e 3 EI
/
ξ =
EI
/
k s GA
k 21 =
k 12
See Table 4.3 for the definitions of
e i ,i
k 22 ={− (
e 1 η
e 3 )
[ e 4 ξ(
e 2 + ζ
e 4 )
]
+
e 2 e 3 }
EI
/
=
1 , 2 , 3 , 4 and
k 23 =
e 3 EI
/ ∇=−
k 14
w
0
b ,
θ
b ,V b ,M b
0
k 24 =
[ e 4 ξ(
e 2 + ζ
e 4 )
] EI
/
∇=
e 3 (
e 2 η
e 4 )
[ e 4 ξ(
e 2 + ζ
e 4 )
]
k 31 =
k 13
EI is the bending stiffness, k s GA is
k 32 =
k 23
the shear stiffness
k 33 =
[
(
e 1 + ζ
e 3 )(
e 2 η
e 4 ) + λ
e 3 e 4 ] EI
/ ∇=
k 11
Set 1
/
k s GA
=
0 if shear
k 34 ={ (
e 1 + ζ
e 3 )
e 3 + λ
e 4 [ e 4 ξ(
e 2 + ζ
e 4 )
]
}
EI
/
deformation is not to be
k 41 =
k 14
k 42 =
c onsidered.
k 24
V a =
k 13 w
0
b
+
k 14 θ
0
b
k 43 =
k 34
M a =
0
b
0
b
k 23 w
+
k 24 θ
k 44 ={
e 2 e 3 (
e 1 η
e 3 )
[ e 4 ξ(
e 2 + ζ
e 4 )
]
}
EI
/
V 0
b
V b +
b
b
=−
k 33 w
+
k 34 θ
=
k 22
M b =−
M b +
b
b
k 43 w
+
k 44 θ
Finally, Eq. (4.90b) becomes
0 (
p 0
T
4
3
2
2
z i
U i
U i
)) 1 P dx
=
()
(
x
=
(2)
120 EI
24 EI
6
which is the result at x
= .
If x
<
,
x
0 (
z i
U i
U i
(τ )) 1 P
=
((
x
))
(τ )
d
τ
x 5
120 EI
T
x 4
24 EI
x 2
2
x 3
6
p 0
=
(3)
With the assistance of U i
e A x , the loading vector z i
=
can be expressed in the series form
A j x ( j + 1 )
z i
=
! k ! P
(4)
(
j
+
k
+
1
)
j
=
0
where k
=
0 for a uniform load, k
=
1 for a linearly varying load, etc. For example, if k
=
1 ,
then
I x
2 +
P
A 1 x 2
3!
A 2 x 3
4!
A 3 x 4
5!
z i
=
+
+
(5)
where use has been made of A j
4 and A 0
=
0 for j
=
I , the unit diagonal matrix. Equation
=
(5) at x
gives (2).
Search WWH ::




Custom Search