Information Technology Reference
In-Depth Information
The expanded operator matrix k D
can be formed using the expressions for D and E from
Chapter 1, Eqs. (1.22) and (1.34).
00
x
0
0
y
00
z
··· ··· ···
D u
=
0
y
x
0
z
x
0
z
y
ν v v .
1
0
0
0
.
ν
ν
ν
1
0
0
0
.
ν
ν
1
ν
0
0
0
2 G
E
=
···
···
···
···
···
···
···
1
2
ν
. (
ν)/
0
0
0
1
2
2
0
0
.
0
0
0
0
(
1
2
ν)/
2
0
.
0
0
0
0
0
(
1
2
ν)/
2
E
G
=
2
(
1
+ ν)
It is then found that
V δ
δ
W
=
[ u x u y u z ]
.
.
2 G
(
1
ν)
2 G
ν
2 G
ν
ν
ν
ν
x
x
x
y
x
z
1
2
1
2
1
2
. +
. +
+
G
+
G
y G
G
y
y
z
z
x
z
x
............
... ............
... ............
.
.
u x
u y
u z
p Vx
p Vy
p Vz
2 G
ν
2 G
(
1
ν)
2 G
ν
ν x
ν y
ν z
y
y
y
×
1
2
1
2
1
2
dV
. + x
. + z
+ x
G
y
G
x + z
G
z
G
y
............
... ............
... ............
.
.
2 G
ν
2 G
ν
2 G
(
1
ν)
ν
ν
ν
z
x
z
y
z
z
1
2
1
2
1
2
. +
. +
+
G
G
G
+
G
x
z
y
z
x
x
y
y
k D
p x
p y
p z
dS
S p δ
[ u x u y u z ]
=
0
(2.59)
= x ,
= y ,
= z
z
where
are partial derivatives acting on the preceding
variable, i.e., u x ,u y , or u z . In Eq. (2.59), the only unknowns are the displacements. As will
be seen later, this form of the principle of virtual work embodies the displacement method
of structural analysis. The introduction of the operator matrix k D is very useful for a unified
description of several different problem types. It reveals the structure of a corresponding
and x
, y
, z
x
y
Search WWH ::




Custom Search