Information Technology Reference
In-Depth Information
Substitute
V σ
δ
u i dV
=
p i
δ
u i dS
V σ
δ
u i, j dV
ij, j
ij
S
of Eq. (2.40) into Eq. (2.44). Also, introduce Eq. (2.45) to find
V σ
δ
p Vi δ
p i δ
δ
=
u i, j dV
u i dV
u i dS
p i
u i dS
0
(2.46)
ij
V
S p
S u
To introduce strain into Eq. (2.46), we recall that in Appendix I, the virtual displacement
δ
u i is defined by introducing a family of neighboring functions,
u i =
u i + δ
u i
The corresponding strain-displacement relationship of Chapter 1, Eq. (1.21) is
=
D
u . Then
2
,i
1
2 (
1
2 (
1
=
u i, j
+
u j,i
) =
u i, j
+
u j,i
) +
u i
)
+
u j
)
ij
,j
1
2 (
1
2 δ(
=
u i, j +
u j,i ) +
u i, j +
u j,i ) = ij + δ ij
(2.47)
This uses Eq. (I.6) in Appendix I,
u i ) ,j = δ(
u i, j ).
It follows that if the displacements u and
u
obey their respective strain-displacement relationships, then
1
2 δ(
δ
=
u i, j
+
u j,i
)
in
V
(2.48)
ij
By using the summation convention and Eq. (2.48) it can be verified that (Problem 2.13)
σ ij δ
u i, j = σ ij δ ij and Eq. (2.46) can be written as
V σ
δ
ij dV
p Vi δ
u i dV
p i δ
u i dS
p i
δ
u i dS
=
0
ij
V
S p
S u
or
T σ dV
u T p V dV
u T p dS
u T p dS
V δ
V δ
S p δ
S u δ
=
0
(2.49)
If u i and
u i both satisfy the geometric boundary conditions
(
u i =
u i on S u )
,
δ
u i =
0on S u
(2.50)
Virtual displacements that satisfy both Eqs. (2.48) and (2.50) are said to be kinematically
admissible. Applying Eq. (2.50) to Eq. (2.49) causes the integral over S u [in Eq. (2.49)] to be
equal to zero. Thus,
V σ
δ
ij dV
p Vi δ
u i dV
p i δ
u i dS
=
0
ij
V
S p
or
(2.51)
V δ
T σ dV
u T p V dV
u T p dS
V δ
S p δ
=
0
Search WWH ::




Custom Search