Digital Signal Processing Reference
In-Depth Information
over traditional techniques comes from the algorithms' ability to find multiple so-
lutions so that designers can choose a solution based on their requirements. This
can be achieved using a Pareto optimization technique, which is a potential area of
research in the iterative design of digital filters.
Acknowledgements The financial support provided by NSF EFRI (#1238097) and NSF CA-
REER (#1231820) is gratefully acknowledged.
References
1. Ababneh, J., Bataineh, M.: Linear phase FIR filter design using particle swarm optimization
and genetic algorithms. Digit. Signal Process. 18 (4), 657-668 (2008)
2. Aktan, M., Yurdakul, A., Dundar, G.: An algorithm for the design of low-power hardware-
efficient FIR filters. IEEE Trans. Circuits Syst. I, Regul. Pap. 55 (6), 1536-1545 (2008)
3. Chang, C.H., Chen, J., Vinod, A.: Information theoretic approach to complexity reduction of
FIR filter design. IEEE Trans. Circuits Syst. I, Regul. Pap. 55 (8), 2310-2321 (2008)
4. Del Valle, Y., Venayagamoorthy, G., Mohagheghi, S., Hernandez, J., Harley, R.: Particle
swarm optimization: basic concepts, variants and applications in power systems. IEEE Trans.
Evol. Comput. 12 (2), 171-195 (2008)
5. Fang, W., Sun, J., Xu, W.: Analysis of adaptive IIR filter design based on quantum-behaved
particle swarm optimization. In: The Sixth World Congress on Intelligent Control and Au-
tomation (WCICA 2006), vol. 1 (2006)
6. Fang, W., Sun, J., Xu, W., Liu, J.: FIR digital filters design based on quantum-behaved particle
swarm optimization. In: First International Conference on Innovative Computing, Information
and Control (ICICIC'06), vol. 1 (2006)
7. Huang, W., Zhou, L., Qian, J.: FIR filter design: frequency sampling filters by particle swarm
optimization algorithm. In: Proceedings of 2004 International Conference on Machine Learn-
ing and Cybernetics, vol. 4 (2004)
8. Jou, Y., Chen, F.: Least-squares design of FIR filters based on a compacted feedback neural
network. IEEE Trans. Circuits Syst. II, Express Briefs 54 (5), 427-431 (2007)
9. Karaboga, N.: Digital IIR filter design using differential evolution algorithm. EURASIP J.
Appl. Signal Process. 2005 (8), 1269-1276 (2005)
10. Krusienski, D., Jenkins, W.: Particle swarm optimization for adaptive IIR filter structures. In:
Proc. Congress on Evolutionary Computation (CEC2004), vol. 1, pp. 965-970 (2004)
11. Kwan, H.K., Jiang, A.: FIR, Allpass, and IIR variable fractional delay digital filter design.
IEEE Trans. Circuits Syst. I, Regul. Pap. 56 (9), 2064-2074 (2009)
12. Liu, Y., Lin, Z.: Optimal design of frequency-response masking filters with reduced group
delays. IEEE Trans. Circuits Syst. I, Regul. Pap. 55 (6), 1560-1570 (2008)
13. Luitel, B., Venayagamoorthy, G.: Differential evolution particle swarm optimization for digital
filter design. In: Proc. IEEE World Congress on Computational Intelligence (WCCI'08), pp.
3954-3961 (2008)
14. Luitel, B., Venayagamoorthy, G.K.: Particle swarm optimization with quantum infusion for
system identification. Eng. Appl. Artif. Intell. 23 (5), 635-649 (2010)
15. Mandal, S., Ghoshal, S.P., Kar, R., Mandal, D.: Design of optimal linear phase FIR high
pass filter using craziness based particle swarm optimization technique. J. King Saud Univ,
Comput. Inf. Sci. 24 (1), 83-92 (2012)
16. Meher, P.K.: New approach to look-up-table design and memory-based realization of
FIR
digital
filter.
IEEE
Trans.
Circuits
Syst.
I,
Regul.
Pap.
57 (3),
592-603
(2010).
doi: 10.1109/TCSI.2009.2026683
17. Shyu, J.J., Pei, S.C., Huang, Y.D.: Design of variable two-dimensional FIR digital filters by
McClellan transformation. IEEE Trans. Circuits Syst. I, Regul. Pap. 56 (3), 574-582 (2009)
Search WWH ::




Custom Search