Environmental Engineering Reference
In-Depth Information
Costerton, J.W., Cheng, K.J., Geesey, G.G., Ladd, T.J., Nickel, J.C., Dasqupta, M., and
Marrie, T. 1987. Bacterial biofilms in nature and disease. Annu. Rev. Microbiol .
41: 435-464.
Dagher, F., Deziel, E., Lirette, P., Paquette, G., Bisaillon, J., and Villemur, R. 1996.
Comparative study of five polycyclic aromatic hydrocarbon degrading bac-
terial strains isolated from contaminated soil. Can. J. Microbiol. 43: 368-377.
Dean-Ross, D. and Cerniglia, C. 1996. Degradation of pyrene by Mycobacterium fla-
vescens . Appl. Microbiol. Biotechnol. 46: 307-312.
Desai, J.D. and Banat, I.M. 1997. Microbial production of surfactants and their com-
mercial potential. Microbiol. Mol. Biol. Rev. 61: 47-64.
Deschenes, L., Lafrance, P., Villeneuve, J.-P., and Samson, R. 1996. Adding sodium
dodecyl sulfate and Pseudomonas aeruginosa UG2 biosurfactants inhibits poly-
cyclic aromatic hydrocarbon biodegradation in a weathered creosote-contam-
inated soil. Appl. Microbiol. Biotechnol . 46: 638-646.
Edwards, D., Luthy, R.G., and Zhongbao, Z. 1991. Solubilization of polycyclic aro-
matic hydrocarbons in micellar nonionic surfactant solutions. Environ. Sci.
Technol. 25: 127-133.
Erickson, D.C., Loehr, R.C., and Neuhauser, E.F. 1993. PAH loss during bioremedia-
tion of manufactured gas plant site soils. Water Res. 27: 911-919.
Erickson, M., Dalhammer, G., and Borg-Karlson, A.K. 2000. Biological degradation
of selected hydrocarbons in an old PAH/creosote contaminated soil from a
gas works site. Appl. Microbiol. Biotechnol. 53: 619-626.
Environmental Protection Agency (EPA). 1984. Health Effects Assessment for Polycyclic
Aromatic Hydrocarbons (PAH) , EPA 549/1-86-013. Environmental Criteria and
Assessment Office, EPA, Cincinnati, OH.
Fautz, B., Lang, S., and Wagner, F. 1986. Formation of cellubiose lipids by growing
and resting cells of Ustilago maydis . Biotechnol. Lett . 8: 757-762.
Finnerty, W.R. 1994. Biosurfactants in environmental biotechnology. Curr. Opin. Bio-
technol . 5: 291-295.
Fletcher, M. 1991. The physiological activity of bacteria attached to solid surfaces.
Adv. Microb. Physiol. 32: 53-85.
Fredrickson, J., Balkwill, D., Drake, G., Romine, M., Ringelberg, D., and White, D.
1995. Aromatic-degrading Sphingomonas isolates from the deep subsurface.
Appl. Environ. Microbiol. 61: 1917-1922.
Fritzsche, C. 1994. Degradation of pyrene at low defined oxygen concentrations by
a Mycobacterium sp. Appl. Environ. Microbiol. 60: 1687-1689.
Gas Research Institute. 1995. Environmentally Acceptable Endpoints in Soil: Risked-Based
Approaches to Contaminated Site Management Based on the Availability of Chem-
icals in Soil , Draft Report of Workshop Proceedings. Gas Research Institute,
Chicago.
Georgiou, F., Lin, S.C., and Sharma, M.M. 1990. Surface-active compounds from
microorganisms. Bio/Technology 10: 60-65.
Gibson, D., Roberts, R., Wells, M., and Kobal, V. 1973. Oxidation of biphenyl by a
Beijerinckia species. Biochem. Biophys. Res. Commun . 50: 211-246.
Givindaswami, M., Feldhake, D., Kinkle, B., Mindell, D., and Loper, J. 1995. Phylo-
genetic comparison of two polycyclic aromatic hydrocarbon-degrading my-
cobacteria. Appl. Environ. Microbiol . 61: 3221-3226.
Gray, M.R., Banerjee, D.K., Dudas, M.J., and Pickard, M.A. 2000. Protocols to enhance
biodegradation of hydrocarbon contaminants in soil. Bioremediation J. 4:
249-257.
Search WWH ::




Custom Search