Environmental Engineering Reference
In-Depth Information
Bedard, D.L., Wagner, R.E., Brennan, M.J., Haberl, M.L., and Brown, J.F., Jr. 1987b.
Extensive degradation of Aroclors and environmentally transformed poly-
chlorinated biphenyls by Alcaligenes eutrophus H850. Appl. Environ. Microbiol.
53: 1094-1102.
Bergmann, J.G. and Sanik, Jr., J. 1957. Determination of trace amounts of chloride in
naphtha. Anal. Chem. 29: 241-243.
Bloem, J. 1995. Fluorescent staining of microbes for total direct counts. In A.D.L.
Akkermans, Ed., Molecular Microbial Ecology Manual . Kluwer Academic Pub-
lishers, Dordrecht, The Netherlands, p. 4.1.8:1-4.1.8:12.
Bloemberg, G.V., O'Toole, G.A., Lugtenberg, B.J.J., and Kolter, R. 1997. Green fluo-
rescent protein as a marker for Pseudomonas spp. Appl. Environ. Microbiol. 63:
4543-4551.
Brenner, V., Arensdorf, J.J., and Focht, D.D. 1994. Genetic construction of PCB de-
graders. Biodegradation 5: 359-377.
Burlage, R.S., Sayler, G.S., and Larimer, F. 1990. Monitoring of naphthalene catabolism
by bioluminescence with nah-lus transcriptional fusions. J. Bacteriol. 172:
4749-4757.
DeLong, E.F., Wickham, G.S., and Pace, N.R. 1989. Phylogenetic stains: ribosomal
RNA-based probes for the identification of single cells. Science 243: 1360-1363.
Desjardin, L.E., Chen, Y., Perkins, M.D., Teixeira, L., Cave, M.D., and Eisennach, K.D.
1998. Comparison of the ABI 7700 system (TaqMan) and competitive PCR for
quantification of IS6110 DNA in sputum during treatment of tuberculosis. J.
Clin. Microbiol. 36: 1964-1968.
Dölken, L., Schüler, F., and Dölken, G. 1998. Quantitative detection of t(14;18)-positive
cell by real-time quantitative PCR using fluorogenic probes. Biotechniques 6:
1058-1064.
Furukawa, K., Tomizuka, N., and Kamibayashi, A. 1979a. Effect of chlorine substitu-
tion on the bacterial metabolism of various polychlorinated biphenyls. Appl.
Environ. Microbiol . 38: 301-310.
Furukawa, K., Tonomura, K., and Kamibayashi, A. 1978. Effect of chlorine substitu-
tion on the biodegradability of polychlorinated biphenyls. Appl. Environ. Mi-
crobiol. 35: 223-227.
Furukawa, K., Tonomura, K., and Kamibayashi, A. 1979b. Metabolism of
2,4-4′-trichlorobiphenyl by Acinetobacter sp. P6. Agric. Biol. Chem . 43:
1577-1583.
Ghosal, D. and You, I.S. 1989. Operon structure and nucleotide homology of the
chlorocatechol oxidation genes of plasmids pJP4 and pAC27. Gene 83:
225-232.
Grüntzig, V., Nold, S.C., Zhou, J., and Tiedje, J.M. 2001. Pseudomonas stutzeri nitrite
reductase gene abundance in environmental samples measured by real-time
PCR. Appl. Environ. Microbiol . 67: 760-768.
Haddock, J.D., Horton, J.R., and Gibson, D.T. 1995. Dihydroxylation and dechlorina-
tion of chlorinated biphenyls by purified biphenyl 2,3-dioxygenase from
Pseudomonas sp. strain LB400. J. Bacteriol. 177: 20-26.
Havel, J. and Reineke, W. 1991. Total degradation of various chlorobiphenyls by
cocultures and in vivo constructed hybrid pseudomonads. FEMS Microbiol.
Lett . 78: 163-170.
Heid, C.A., Stevens, J., Livak, K.J., and Willians, P.M. 1996. Real time quantitative
PCR. Genome Res . 6: 986-994.
Search WWH ::




Custom Search