Biomedical Engineering Reference
In-Depth Information
coefficients
g ( G σ, k
g ( G σ, k
2
4
i , j )
i , j )
1
2
1
2
n i , j = τ
+ ( G i , j ) 2 ,
i , j = τ
+ ( G i , j ) 2 ,
2
ε
2
ε
k = 1
k = 3
g ( G σ, k
g ( G σ, k
6
i , j )
8
i , j )
1
2
1
2
s i , j = τ
+ ( G i , j ) 2 ,
e i , j = τ
+ ( G i , j ) 2
ε
2
ε
2
k =
5
k =
7
and we use either (cf. (11.17))
1
m i , j =
8
k = 1 G i , j 2
8
ε
2
+
or (cf. (11.18))
8
1
8
1
m i , j =
2
+ ( G i , j ) 2
ε
k = 1
to define diagonal coefficients
c i , j = n i , j + w i , j + s i , j + e i , j + m i , j h 2
.
If we define right-hand sides at the n th discrete time step by
r i , j = m i , j h 2 u n 1
,
i , j
then for DF node corresponding to couple ( i , j ) we get the equation
c i , j u n i , j n i , j u n i + 1 , j w i , j u n i , j 1 s i , j u n i 1 , j e i , j u n i , j + 1 = r i , j .
(11.28)
Collecting these equations for all DF nodes and taking into account Dirichlet
boundary conditions, we get the linear system to be solved.
We solve this system by the so-called SOR (successive over relaxation) it-
erative method, which is a modification of the basic Gauss-Seidel algorithm
(see e.g. [46]). At the n th discrete time step we start the iterations by setting
u n (0)
i , j
= u n 1
i , j , i = 1 ,..., m 1 , j = 1 ,..., m 2 . Then in every iteration l = 1 ,... and
for every i = 1 ,..., m 1 , j = 1 ,..., m 2 , we use the following two-step procedure:
Y = ( s i , j u n ( l )
i 1 , j + w i , j u n ( l )
i , j 1 + e i , j u n ( l 1)
i , j + 1 + n i , j u n ( l 1)
i + 1 , j + r i , j ) / c i , j
u n ( l )
i , j
= u n ( l 1)
i , j
+ ω ( Y u n ( l 1)
i , j
) .
Search WWH ::




Custom Search