Biomedical Engineering Reference
In-Depth Information
Sethian's upwinding finite difference scheme, the solution is given by
( V 0 | φ | ) i , j = V 0 i , j [max( D x
+ min( D + x
i , j
, 0) 2
, 0) 2
i , j
+ max( D y
+ min( D + y
i , j , 0) 2
i , j ) 2 ] 1 / 2
if V 0 i , j 0
,
(10.46)
( V 0 | φ | ) i , j = V 0 i , j [max( D + x
+ min( D x
i , j , 0) 2
i , j , 0) 2
+ max( D + y
+ min( D y
i , j , 0) 2
i , j ) 2 ] 1 / 2
otherwise
i , j ) / x , D + y
where D + x
n
i + 1 , j φ
n
n
i , j + 1 φ
n
i , j ) / y and D x
n
i , j
i , j = ( φ
i , j = ( φ
i , j = ( φ
i 1 , j ) / x , D y
i , j φ
i , j 1 ) / y are the forward and backward differences,
φ
i , j = ( φ
respectively.
The external forces left in (10.17) contribute the third underlying static ve-
locity field for snake evolution. Their direction and strength are based on spatial
position, but not on the snake. This motion can be numerically approximated
as follows. Let U ( x , y , t ) denote the underlying static velocity field according to
β
R −∇ g ( · ). We check the sign of each component of U and construct one-sided
upwind differences in the appropriate (upwind) direction [16]:
( U ·∇ φ ) i , j = max( u i , j , 0) D x
i , j + min( u i , j , 0) D + x
i , j
, 0) D y
i , j
, 0) D + y
i , j
n
i , j
n
i , j
+ max( v
+ min( v
,
(10.47)
where U = ( u ,v ). Thus, (10.17) is numerically solved using the schemes de-
scribed above.
Questions
1. What are the advantages of geometric snakes over their parametric coun-
terparts?
2. Which are some of the key papers on the geometric snake?
3. How do I diffuse the region segmentation map?
4. Describe howweighting functions p ( · ) and q ( · ) behave in vector diffusion?
5. What are the parameters in RAGS?
6. How do I choose the parameter values?
7. What are some of the disadvantages of RAGS?
Search WWH ::




Custom Search