Biomedical Engineering Reference
In-Depth Information
setting them to zero results in two necessary but not sufficient conditions for
J m to be at a local extrema. In the following subsections, we will derive these
three conditions.
9.4.3.1 Membership Evaluation
The constrained optimization in Eq. 9.26 will be solved using one Lagrange
multiplier
u ik D ik + N R u ik γ i
c
N
c
F m =
1
u ik
(9.27)
+ λ
,
i = 1
k = 1
i = 1
2 . Taking the derivative of
F m w.r.t. u ik and setting the result to zero, we have, for p > 1,
δ F m
and γ i = x r N k || x r v i ||
2
where D ik =|| x k v i ||
ik D ik + α p
δ u ik = pu p 1
N R u ik γ i λ
u ik = u ik = 0 .
(9.28)
Solving for u ik , we have
1
p
1
λ
p ( D ik + N R γ i )
u ik =
(9.29)
.
Since c j = 1 u jk = 1
k ,
1
c
p
1
λ
p ( D jk + N R γ j )
= 1
(9.30)
j = 1
or
p
(9.31)
λ =
1 p 1
c j = 1
1
p
1
( D jk + N R γ j )
Substituting into Eq. 9.29, the zero-gradient condition for the membership esti-
mator can be rewritten as
1
c j = 1 D ik + N R γ i
u ik =
p 1 .
(9.32)
1
D jk + N R γ j
 
Search WWH ::




Custom Search