Biomedical Engineering Reference
In-Depth Information
where
D 11 = R p i , j + 3
(2) (0) + 1 ,
(5.74)
D 22 = R q i , j + 3
(2) (0) + 1 ,
(4) (0) ,
D = D 11 D 22 R p i , j R q i , j
(2) (0) + 2
D 33 = 2
and
C 1 = ( E R ) R p p i , j
2 N 2
(3) ( k ) +
(1) ( k )) (2 p i k , j + p i , j k )
(2) ( k ) ,
Z i k , j (
+
k =− 2 N + 2
C 2 = ( E R ) R q q i , j
2 N 2
(3) ( k ) +
(1) ( k )) ( q i k , j + 2 q i , j k )
(2) ( k ) ,
Z i , j k (
+
k =− 2 N + 2
2 N 2
(3) ( k ) +
(1) ( k ))
C 3 =−
( p i k , j + q i , j k )(
k =− 2 N + 2
(2) ( k ) +
(4) ( k )) .
+ ( Z i k , j + Z i , j k )(
(5.75)
Finally, we can write the iterative formula
p m + 1
i , j
= p i , j + δ p i , j ,
(5.76)
q m + 1
i , j
= q i , j + δ q i , j ,
z m + 1
i , j
= z i , j + δ z i , j .
We now summarize this method as the follows:
Step 0. Compute 1D connection coefficients and 2D connection coefficients.
Step 1. Compute the set of coefficients (5.75) and (5.74).
Step 2. Compute the set of variations δ p i , j q i , j , and δ z i , j (5.73).
Step 3. Update the current ( p i , j , q i , j ) and then the current shape reconstruc-
tion Z i , j using Eq. (5.76).
5.4.3 Summary
The wavelet-based method we demonstrated in this section is based on the
approximation of the objective function in V 0 . It should be pointed out that it
Search WWH ::




Custom Search