Biomedical Engineering Reference
In-Depth Information
2
dx dy
M 1
2
M 1
( x )
0 , k , l ( x , y )
( x )
0 , k , l ( x , y )
q k , l φ
q k , l φ
+
+
k , l = 0
k , l = 0
M 1
2
M
1
( x )
0 , k , l ( x , y )
Z k , l φ
p k , l φ 0 , k , l ( x , y )
+
k , l = 0
k , l = 0
2
dx dy
M 1
M 1
( y )
0 , k , l ( x , y )
( x )
0 , k , l ( x , y )
Z k , l φ
q k , l φ
+
k , l = 0
k , l = 0
M 1
2
M 1
( xx )
0 , k , l ( x , y )
( x )
0 , k , l ( x , y )
Z k , l φ
p k , l φ
k , l =
0
k , l =
0
2
dx dy .
M 1
M 1
( yy )
0 , k , l ( x , y )
( y )
0 , k , l ( x , y )
+
Z k , l φ
q k , l φ
k , l = 0
k , l = 0
There are total of 3 M 2 unknown variables (they are the function samples of
Z , p , and q ):
p k , l , q k , l ,
and Z k , l ,
where the indices run on M × M grid (see (5.69)).
It is remarkable that the interpolating property (5.69) simplified the compu-
tation significantly. The integrals we need to compute in energy function are
only involved with the integrals which are the inner product of the scaling func-
tion φ ( x , y ): = φ 0 , 0 , 0 ( x , y ), its shifting φ k , l ( x , y ): = φ 0 , k , l ( x , y ), and their partial
derivatives of first and second orders. Note that we have dropped the scale (or
the resolution) index 0 for simplicity , since the discussion here does not relate
to other scales. Now we assume that the scaling function φ is the Daubechies
scaling function with 2 N + 1 filter coefficients c i (see (5.63)). These definite
integrals are called connection coefficients [5]:
φ
( xx )
k , l
(4)
( xx ) ( x , y ) φ
(4) ( k ) D ( l ) ,
x ( k , l ) =
( x , y ) dx dy =
φ
( yy )
k , l
(4)
( yy ) ( x , y ) φ
(4) ( k ) ,
y ( k , l ) =
( x , y ) dx dy = D ( k )
φ
( xy )
k , l
(4)
( xy ) ( x , y ) φ
(2) ( k )
(2) ( l ) ,
xy ( k , l ) =
( x , y ) dx dy =
Search WWH ::




Custom Search