Biomedical Engineering Reference
In-Depth Information
this method discretizes the reflectance map in a different way. Like Pentland's
method, the surface orientation ( p , q ) is approximated by its linear approx-
imation using the forward difference formula (5.36), while unlike Pentland's
method, the reflectance map is then directly linearized in terms of the depth Z
using Taylor series expansion. Finally, Newton's iteration method is applied to
the discretized equation to get a numerical approximation to the depth Z . In
what follows, we will derive this scheme step by step.
To begin with, we rewrite the irradiance equation (5.2) in the following for-
mat:
0 = f = I R .
(5.42)
Replacing p and q by their linear approximation using the forward difference
formulas (5.36), we obtain
0 = f ( I ( x , y ) , Z ( x , y ) , Z ( x 1 , y ) , Z ( x , y 1))
= I ( x , y ) R ( Z ( x , y ) Z ( x 1 , y ) , Z ( x , y ) Z ( x , y 1)) .
(5.43)
If we take the Taylor series expansion about a given depth map Z n 1 ,weget
the following equation:
0 = f ( I ( x , y ) , Z ( x , y ) , Z ( x 1 , y ) , Z ( x , y 1))
f ( I ( x , y ) , Z n 1 ( x , y ) , Z n 1 ( x 1 , y ) , Z n 1 ( x , y 1))
( Z ( x , y ) Z n 1 ( x , y ))
+
× f ( I ( x , y ) , Z n 1 ( x , y ) , Z n 1 ( x 1 , y ) , Z n 1 ( x , y 1))
Z ( x , y )
( Z ( x 1 , y ) Z n 1 ( x 1 , y ))
+
× f ( I ( x , y ) , Z n 1 ( x , y ) , Z n 1 ( x 1 , y ) , Z n 1 ( x , y 1))
Z ( x 1 , y )
( Z ( x , y 1) Z n 1 ( x , y 1))
+
× f ( I ( x , y ) , Z n 1 ( x , y ) , Z n 1 ( x 1 , y ) , Z n 1 ( x , y 1))
Z ( x , y 1)
(5.44)
.
Given an initial value Z 0 ( x , y ), and using the iterative formula:
Z n ( x , y 1) = Z n 1 ( x , y 1) ,
Z n ( x 1 , y ) = Z n 1 ( x 1 , y ) ,
Search WWH ::




Custom Search