Biomedical Engineering Reference
In-Depth Information
[53] Hoffman, E. J. and Phelps, M. E., Positron emission tomography: Prin-
ciples and quantitation, In: Positron Emission Tomography and Au-
toradiography: Principles and Applications for the Brain and Heart,
Phelps, M. E., Mazziotta, J. C., and Schelbert, H. R., eds., Raven Press,
New York, pp. 237-286, 1986.
[54] Derenzo, S. E., Budinger, T. F., and Vuletich, T., High resolution positron
emission tomography using small bismuth germanate crystals and in-
dividual photosensors, IEEE Trans. Nucl. Sci., Vol. NS-30, pp. 665-670,
1983.
[55] Wong, W. H., Mullani, N. A., and Wardworth, G., Characteristics of
small barium fluoride (BaF 2 ) scintillation for high intrinsic resolution
time-of-flight positron emission tomography, IEEE Trans. Nucl. Sci.,
Vol. 31, pp. 381-386, 1984.
[56] Takagi, K. and Fukazawa, T., Cerium-activated Gd 2 SiO 5 single crystal
scintillator, Appl. Phys. Lett., Vol. 42, pp. 43-45, 1983.
[57] Melcher, C. L. and Schweitzer, J. S., Cerium-doped lutetium oxy-
orthosilicate: A fast, efficient, new scintillator, IEEE Trans. Nucl. Sci.,
Vol. 39, pp. 502-505, 1992.
[58] Brooks, R. A. and Di Chiro, G., Principles of computer assisted tomog-
raphy (CAT) in radiographic and radioisotopic imaging, Phys. Med.
Biol., Vol. 21, pp. 689-732, 1976.
[59] Farquhar, T. H., Chatziioannou, A., Chinn, G., Dahlbom, M., and Hoff-
man, E. J., An investigation of filter choice for filtered back-projection
reconstruction in PET, IEEE Trans. Nucl. Sci., Vol. 45, pp. 1133-1137,
1998.
[60] Levin, C. S. and Hoffman, E. J., Calculation of positron range and
its effect on the fundamental limit of positron emission tomogra-
phy system spatial resolution, Phys. Med. Biol., Vol. 44, pp. 781-799,
1999.
[61] Finkelstein, L. and Carson, E. R., Mathematical Modelling of Dynamic
Biological Systems, 2nd ed., Research Studies Press Ltd, Letchworth,
1984.
Search WWH ::




Custom Search