Civil Engineering Reference
In-Depth Information
60. Naik, T., Kraus, R., Kumar, R.: Influence of Type of Coarse Aggregate on the
Coefficient of Thermal Expansion of Concrete. J. Materials in Civil Engineering,
ASCE 23(4), 467-472 (2011)
61. National Academy of Sciences, Expansion joints in buildings. Technical Report No.
65, Washington, DC (1974)
62. Ndon, U.J., Bergeson, K.L.: Thermal Expansion of Concretes: Case Study in Iowa.
Journal of Materials in Civil Engineering 7(4), 246-251 (1995)
63. Ohde, J.: Zur Theorie des Erddruckes unter besonderer Berlicksichtigung der Erddruck
verteilung, Die Bautechnik, Germany (1938)
64. Oakdale, DataFit for Windows Version 8.0 User's Manual, Oakdale Engineering
(2002), http://www.oakdaleengr.com/index.html
65. Portland Cement Association (PCA), Building Movements and Joints, Rep.
EB086.01B, Skokie, Ill (1982)
66. de Prony, R.: Recherchessur la poussee des terres, et sur la forme et les dimensions a
donner aux murs de revetement. Bull. Societe Philomatique (1802)
67. Rankine, W.J.M.: On the stability of loose earth. Phil. Trans. Roy. Soc.
London 147(2), 9-27 (1857)
68. REI, STAAD Pro, Technical Manual, Research Engineers International, Research
Engineers, CA (2002)
69. Rondelet, J.: Traite theorique et pratique de l'art de batir, 5th edn., Paris (1812)
70. Rowe, P.W.: Anchored sheet pile walls. Proc. ICE 1(1), 27-70 (1952)
71. Rutenberg, A., Heidebrecht, A.: Approximate Analysis of Asymmetric Wall-Frame
Structures. Building Science 10, 27-35 (1975)
72. Schanz, T.: Zur modellierung des mechanishen verhaltens von reibungsmaterialen.
Habilitation. Stuttgard University (1998)
73. Schanz, T., Vermeer, P.A., Bonnier, P.G.: The hardening soil model: formulation and
verification. In: Beyond 2000 in Computational Geotechnics: 10 Years of PLAXIS
International; Proceedings of the International Symposium beyond 2000 in
Computational Geotechnics, Amsterdam, The Netherlands, March 18-20. Taylor &
Francis (1999)
74. Sandford, T.C., Elgaaly, M.: Skew effects on backfill pressures at frame bridge
abutments. In: Transportation Research Record TRR 1415, pp. 1-11. National
Academy Press, Washington DC (1993)
75. Smith, B.S., Kuster, M., Hoenderkamp, J.C.D.: A Generalized Approach to the
Deflection Analysis of Braced Frames, Rigid Frame and Couples Wall Structures.
Canadian Journal of Civil Engineering, 230-240 (1981)
76. Smith, B.S., Kuster, M., Hoenderkamp, J.C.D.: Generalized Method for
Estimating Drift in High-Rise Structures. Journal of Structural Engineering,
ASCE 110(7), 1549-1562 (1984)
77. Springman, S.M., Norrish, A.R.M.: Soil-structure interaction: Centrifuge modeling of
integral bridge abutments. In: Proc. of Henderson Colloquium, Toward Joint Free
Bridges, pp. 251-263 (1994)
78. Springman, S.M., Norrish, A.R.M., Ng, C.W.W.: Cyclic Loading of Sand Behind
Integral Bridge Abutment, Technical Report 146, UK Highways Agency (1996)
79. Swaddiwudhipong, S., Lim, Y.B., Lee, S.L.: An Efficient Finite Strip Analysis of
Frame-Shear Wall Tall Building. Computers and Structures 29(6), 1111-1118 (1988)
80. Terzaghi, K.: A Fundamental Fallacy in Earth Pressure Computations. J. Boston
Society of Civil Engineers 23(2), 71-88 (1936)
81. Terzaghi, K.: General wedge theory of earth pressure. Trans. ASCE 106, 68-97 (1941)
Search WWH ::




Custom Search