Chemistry Reference
In-Depth Information
107 Scepaniak, J.J., Vogel, C.S., Khusniyarov, M.M., Heinemann, F.W., Meyer, K., and
Smith, J.M. Synthesis, structure, and reactivity of an iron(V) nitride. Science 2011,
331 , 1049-1052.
108 Krebs, C., Fujimori, D.G., Walsh, C.T., and Bollinger, J.M., Jr. Non-heme Fe(IV)-
oxo intermediates. Acc. Chem. Res. 2007, 40 , 484-492.
109 Ryabov, A.D. and Collins, T.J. Mechanistic considerations on the reactivity of
green Fe III -TAML activators of peroxides. Adv. Inorg. Chem. 2009, 61 , 471-521.
110 Oliveria, F.T.D., Chanda, A., Benerjee, D., Shan, X., Mondal, S., Que, J.L., Bomi-
naar, E.L., Munck, E., and Collins, T.J. Chemical and spectroscopic evidence for
an Fe V -Oxo complex. Science 2007, 315 , 835-839.
111 Kaizer, J., Klinker, E.J., Oh, N.Y., Rhode, J., Song, W.J., Stubna, A., Kim, J., Munck,
E., Nam, W., and Que, J.L. Nonheme Fe IV O complexes that can oxidize the C-H
bonds of cyclohexane at room temperature. J. Am. Chem. Soc. 2004, 126 ,
472-473.
112 Perry, J.J.P., Shin, D.S., Getzoff, E.D., and Tainer, J.A. The structural biochemistry
of the superoxide dismutases. Biochem. Biophys. Acta—Proteins Proteomics 2010,
1804 , 245-262.
113 Mylonas, M., Krezel, A., Plakatouras, J.C., Hadjiliadis, N., and Bal, W. Interactions
of transition metal ions with His-containing peptide models of histone H2A. J.
Mol. Liq. 2005, 118 , 119-129.
114 Bal, W., Liang, R., Lukszo, J., Lee, S.-H., Dizdaroglu, M., and Kasprzak, K.S. Ni(II)
specifically cleaves the C-terminal tail of the major variant of histone H2A and
forms an oxidative damage-mediating complex with the cleaved- off octapeptide.
Chem. Res. Toxicol. 2000, 13 , 616-624.
115 Aydin, R. and Yirikogullari, A. Potentiometric study on complexation of divalent
transition metal ions with amino acids and adenosine 5′-triphosphate. J. Chem.
Eng. Data 2010, 55 , 4794-4800.
116 Taha, M. and Khalil, M.M. Mixed-ligand complex formation equilibria of
cobalt(II), nickel(II), and copper(II) with N,N-bis(2-hydroxyethyl)glycine
(bicine) and some amino acids. J. Chem. Eng. Data 2005, 50 , 157-163.
117 Krezel, A., Szczepanik, W., Sokołowska, M., Jezowska-Bojczuk, M., and Bal, W.
Correlations between complexation modes and redox activities of Ni(II)-GSH
complexes. Chem. Res. Toxicol. 2003, 16 , 855-864.
118 Ferretti, L., Elviri, L., Pellinghelli, M.A., Predieri, G., and Tegoni, M. Glutathione
and N-acetylcysteinylglycine: protonation and Zn 2+ complexation. J. Inorg.
Biochem. 2007, 101 , 1442-1456.
119 Ciriolo, M.R., Desideri, A., Paci, M., and Rotilio, G. Reconstitution of Cu,Zn-
superoxide dismutase by the Cu(I) glutathione complex. J. Biol. Chem. 1990, 265 ,
11030-11034.
120 Krezel, A., Wójcik, J., Maciejczyk, M., and Bal, W. Zn(II) complexes of glutathione
disulfide: structural basis of elevated stabilities. Inorg. Chem. 2011, 50 , 72-85.
121 Shtyrlin, V.G., Zyavkina, Y.I., Ilakin, V.S., Garipov, R.R., and Zakharov, A.V.
Structure, stability, and ligand exchange of copper(II) complexes with oxidized
glutathione. J. Inorg. Biochem. 2005, 99 , 1335-1346.
122 Mayer, B., Pfeiffer, S., Schrammel, A., Koesling, D., Schmidt, K., and Brunner, F.
A new pathway of nitric oxide/cyclic GMP signaling involving S-nitrosoglutathione.
J. Biol. Chem. 1998, 273 , 3264-3270.
Search WWH ::




Custom Search