Chemistry Reference
In-Depth Information
66 Valko, M., Leibfritz, D., Moncol, J., Cronin, M.T.D., Mazur, M., and Telser, J. Free
radicals and antioxidants in normal physiological functions and human disease.
Int. J. Biochem. Cell Biol. 2007, 39 , 44-84.
67 Waalkes, M.P., Liu, J., Ward, J.M., and Diwan, B.A. Mechanisms underlying arsenic
carcinogenesis: hypersensitivity of mice exposed to inorganic arsenic during ges-
tation. Toxicology 2004, 198 , 31-38.
68 Jomova, K., Jenisova, Z., Feszterova, M., Baros, S., Liska, J., Hudecova, D., Rhodes,
C.J., and Valko, M. Arsenic: toxicity, oxidative stress and human disease. J. Appl.
Toxicol. 2011, 31 , 95-107.
69 Sharma, V.K. and Sohn, M. Aquatic arsenic: toxicity, speciation, transformations,
and remediation. Environ. Int. 2009, 35 , 743-759.
70 Roy, A., Manna, P., and Sil, P.C. Prophylactic role of taurine on arsenic mediated
oxidative renal dysfunction via MAPKs/NF-B and mitochondria dependent path-
ways. Free Radic. Res. 2009, 43 , 995-1007.
71 Teow, Y., Asharani, P.V., Hande, M.P., and Valiyaveettil, S. Health impact and
safety of engineered nanomaterials. Chem. Commun. 2011, 47 , 7025-7038.
72 Barrena, R., Casals, E., Colón, J., Font, X., Sánchez, A., and Puntes, V. Evaluation
of the ecotoxicity of model nanoparticles. Chemosphere 2009, 75 , 850-857.
73 Sharma, V.K., Yngard, R.A., and Lin, Y. Silver nanoparticles: green synthesis and
their antimicrobial activities. Adv. Colloid Interface Sci. 2009, 145 , 83-96.
74 Smetana, A.B., Klabunde, K.J., Marchin, G.R., and Sorensen, C.M. Biocidal
activity of nanocrystalline silver powders and particles. Langmuir 2008, 24 ,
7457-7464.
75 Dallas, P., Sharma, V.K., and Zboril, R. Silver polymeric nanocomposites as
advanced antimicrobial agents: classification, synthetic paths, applications, and
perspectives. Adv. Colloid Interface Sci. 2011, 166 , 119-135.
76 He, D., Jones, A.M., Garg, S., Pham, A.N., and Waite, T.D. Silver nanoparticle-
reactive oxygen species interactions: application of a charging-discharging model.
J. Phys. Chem. C 2011, 115 , 5461-5468.
77 Hwang, E.T., Lee, J.H., Chae, Y.J., Kim, Y.S., Kim, B.C., Sang, B.I., and Gu, M.B.
Analysis of the toxic mode of action of silver nanoparticles using stress-specific
bioluminescent bacteria. Small 2008, 4 , 746-750.
78 Ahamed, M., Karns, M., Goodson, M., Rowe, J., Hussain, S.M., Schlager, J.J., and
Hong, Y. DNA damage response to different surface chemistry of silver nanopar-
ticles in mammalian cells. Toxicol. Appl. Pharmacol. 2008, 233 , 404-410.
79 Mahmoudi, M., Lynch, I., Ejtehadi, M.R., Monopoli, M.P., Bombelli, F.B., and
Laurent, S. Protein-nanoparticles interactions: opportunities and challenges.
Chem. Rev. 2011, 111 , 5610-5637.
80 Karakoti, A., Singh, S., Dowding, J.M., Seal, S., and Self, W.T. Redox-active radical
scavenging nanomaterials. Chem. Soc. Rev. 2010, 39 , 4422-4432.
81 Marshall, N.M., Garner, D.K., Wilson, T.D., Gao, Y.G., Robinson, H., Nilges, M.J.,
and Lu, Y. Rationally tuning the reduction potential of a single cupredoxin
beyond the natural range. Nature 2009, 462 , 113-116.
82 Wang, L. and Chance, M.R. Structural mass spectrometry of proteins
using hydroxyl radical based protein footprinting. Anal. Chem. 2011, 83 , 7234-
7241.
Search WWH ::




Custom Search