Chemistry Reference
In-Depth Information
30 Hardy, J. and Selkoe, D.J. The amyloid hypothesis of Alzheimer's disease: progress
and problems on the road to therapeutics. Science 2002, 297 , 353-356.
31 Goate, A., Chartier-Harlin, M.C., Mullan, M., Brown, J., Crawford, F., Fidani, L.,
Giuffra, L., Haynes, A., Irving, N., James, L., Mant, R., Newton, P., Rooke, K.,
Roques, P., Talbot, C., Pericak-Vance, M., Roses, A., Williamson, R., and Hardy, J.
Segregation of a missense mutation in the amyloid precursor protein gene with
familial Alzheimer's disease. Nature 1991, 349 , 704-706.
32 Levy-Lahad, E., Tsuang, D., and Bird, T.D. Recent advances in the genetics of
Alzheimer's disease. J. Geriatr. Psychiatry Neurol. 1998, 11 , 42-54.
33 Sherrington, R., Froelich, S., Sorbi, S., Campion, D., Chi, H., Rogaeva, E.A.,
Levesque, G., Rogaev, E.I., Lin, C., Liang, Y., Ikeda, M., Mar, L., Brice, A., Agid,
Y., Percy, M.E., Clerget-Darpoux, F., Piacentini, S., Marcon, G., Nacmias, B., Ama-
ducci, L., Frebourg, T., Lannfelt, L., Rommens, J.M., and St George-Hyslop, P.H.
Alzheimer's disease associated with mutations in presenilin 2 is rare and variably
penetrant. Hum. Mol. Genet. 1996, 5 , 985-988.
34 De Ferrari, G.V. and Inestrosa, N.C. Wnt signaling function in Alzheimer's disease.
Brain Res. Rev. 2000, 33 , 1-12.
35 Jomova, K. and Valko, M. Advances in metal-induced oxidative stress and human
disease. Toxicology 2011, 283 , 65-87.
36 Jomova, K., Vondrakova, D., Lawson, M., and Valko, M. Metals, oxidative stress
and neurodegenerative disorders. Mol. Cell. Biochem. 2010, 345 , 91-104.
37 Rivera-Mancía, S., Pérez-Neri, I., Ríos, C., Tristán-López, L., Rivera-Espinosa, L.,
and Montes, S. The transition metals copper and iron in neurodegenerative dis-
eases. Chem. Biol. Interact. 2010, 186 , 184-199.
38 Sesti, F., Liu, S., and Cai, S.Q. Oxidation of potassium channels by ROS: a general
mechanism of aging and neurodegeneration? Trends Cell Biol. 2010, 20 , 45-51.
39 Grasso, G. The use of mass spectrometry to study amyloid-β peptides. Mass Spec-
trom. Rev. 2011, 30 , 347-365.
40 Lovell, M.A., Robertson, J.D., Teesdale, W.J., Campbell, J.L., and Markesbery,
W.R. Copper, iron and zinc in Alzheimer's disease senile plaques. J. Neurol. Sci.
1998, 158 , 47-52.
41 Hung, Y.H., Bush, A.I., and Cherny, R.A. Copper in the brain and Alzheimer's
disease. J. Biol. Inorg. Chem. 2010, 15 , 61-76.
42 Dikalov, S.I., Vitek, M.P., and Mason, R.P. Cupric-amyloid β peptide complex
stimulates oxidation of ascorbate and generation of hydroxyl radical. Free Radic.
Biol. Med. 2004, 36 , 340-347.
43 Dawson, T.M. and Dawson, V.L. Molecular pathways of neurodegeneration in
Parkinson's disease. Science 2003, 302 , 819-822.
44 Thomas, B. and Beal, M.F. Parkinson's disease. Hum. Mol. Genet. 2007, 16 , Spec
No. 2, R183-R194.
45 Danielson, S.R. and Andersen, J.K. Oxidative and nitrative protein modifications
in Parkinson's disease. Free Radic. Biol. Med. 2008, 44 , 1787-1794.
46 Bharath, S., Hsu, M., Kaur, D., Rajagopalan, S., and Andersen, J.K. Glutathione,
iron and Parkinson's disease. Biochem. Pharmacol. 2002, 64 , 1037-1048.
47 Martin, H.L. and Teismann, P. Glutathione—a review on its role and significance
in Parkinson's disease. FASEB J. 2009, 23 , 3263-3272.
Search WWH ::




Custom Search