Chemistry Reference
In-Depth Information
246 Perez-Benito, J.F. and Arias, C. Occurrence of colloidal manganese dioxide in
permanganate reactions. J. Colloid Interface Sci. 1992, 152 , 70-84.
247 Bajpai, u.D.N. and Bajpai, A.K. Aqueous polymerization of acrylamide initiated
with the permanganate-L-serine redox system. Macromolecules 1985, 18 ,
2113-2116.
248 Perez-Benito, J.F. Permanganate oxidation of α-amino acids: kinetic correlations
for the nonautocatalytic and autocatalytic reaction pathways. J. Phys. Chem. A
2011, 115 , 9876-9885.
249 Malik, M.A., Basahel, S.N., Obaid, A.Y., and Khan, Z. Oxidation of tyrosine by
permanganate in presence of cetyltrimethylammonium bromide. Colloids Surf. B
2010, 76 , 346-353.
250 Foppoli, C., De Marco, C., Blarzino, C., Coccia, R., Mosca, L., and Rosei, M.A.
Dimers formation by cytochrome c-catalyzed oxidation of tyrosine and enkepha-
lins. Amino Acids 1997, 13 , 273-280.
251 Giulivi, C. and Davies, K.J.A. Mechanism of the formation and proteolytic release
of H 2 O 2 -induced dityrosine and tyrosine oxidation products in hemoglobin and
red blood cells. J. Biol. Chem. 2001, 276 , 24129-24136.
252 Sheikh, R.A., Al-Nowaiser, F.M., Malik, M.A., Al-Youbi, A.O., and Khan, Z.
Effect of cationic micelles of cetyltrimethylammonium bromide on the MnO
oxidation of valine. Colloids Surf. Physicochem. Eng. Aspects 2010, 366 ,
129-134.
253 Gurame, V.M., Supale, A.R., and Gokavi, G.S. Kinetic and mechanistic study of
oxidation of L-methionine by Waugh-type enneamolybdomanganate(IV) in per-
chloric acid. Amino Acids 2010, 38 , 789-795.
254 Panari, R.G., Chougale, R.B., and Nandibewoor, S.T. Kinetics and mechanism of
oxidation of L-phenylalanine by alkaline permanganate. Pol. J. Chem. 1998, 72 ,
99-107.
255 Chang, H., Korshin, G.V., and Ferguson, J.F. Investigation of mechanisms of oxida-
tion of EDTA and NTA by permanganate at high pH. Environ. Sci. Technol. 2006,
40 , 5089-5094.
256 Sychev, A.Y. and Isak, V.G. Iron compounds and the mechanisms of the homo-
geneous catalysis of the activation of O 2 and H 2 O 2 and of the oxidation of organic
substrates. Russ. Chem. Rev. 1995, 64 , 1105-1129.
257 Mukherjee, A., Cranswick, M.A., Chakrabarti, M., Paine, T.K., Fujisawa, K.,
Münck, E., and Que, L., Jr. Oxygen activation at mononuclear nonheme iron
centers: a superoxo perspective. Inorg. Chem. 2010, 49 , 3618-3628.
258 Matsui, T., Iwasaki, M., Sugiyama, R., unno, M., and Ikeda-Saito, M. Dioxygen
activation for the self-degradation of heme: reaction mechanism and regulation
of heme oxygenase. Inorg. Chem. 2010, 49 , 3602-3609.
259 Deguillaume, L., Leriche, M., Desboeufs, K., Maillhot, G., George, C., and Chau-
merliac, N. Transition metals in atmospheric liquid phases: sources, reactivity, and
sensitive parameters. Chem. Rev. 2005, 105 , 3388-3431.
260 Shan, X. and Que, J.L. High-valent nonheme iron-oxo species in biometric oxida-
tions. J. Inorg. Biochem. 2006, 100 , 421-433.
261 Groves, J.T. High-valent iron in chemical and biological oxidations. J. Inorg.
Biochem. 2006, 100 , 434-447.
Search WWH ::




Custom Search