Chemistry Reference
In-Depth Information
77 Vásquez-Vivar, J., denicola, A., Radi, R., and Augusto, O. Peroxynitrite-mediated
decarboxylation of pyruvate to both carbon dioxide and carbon dioxide radical
anion. Chem. Res. Toxicol. 1997, 10 , 786-794.
78 Surdhar, P.S. and Armstrong, d.A. Reduction potentials and exchange reactions
of thiyl radicals and disulfide anion radicals. J. Phys. Chem. 1987, 91 , 6532-6537.
79 Surdhar, P.S. and Armstrong, d.A. Redox potentials of some sulfur-containing
radicals. J. Phys. Chem. 1986, 90 , 5915-5917.
80 Favaudon, V., Tourbez, H., Houée-Levin, C., and Lhoste, J.M. CO •− radical induced
cleavage of disulfide bonds in proteins. A γ-ray and pulse radiolysis mechanistic
investigation. Biochemistry 1990, 29 , 10978-10989.
81 Li, S., Matthews, J., and Sinha, A. Atmospheric hydroxyl radical production from
electronically excited NO 2 and H 2 O. Science 2008, 319 , 1657-1660.
82 Bauer, g., Chatgilialoglu, C., gebicki, J.L., gebicka, L., gescheidt, g., golding,
B.T., goldstein, S., Kaizer, J., Merenyi, g., Speien, g., and Wardman, P. Biologi-
cally relevant small radicals. Chimia 2008, 62 , 704-712.
83 Palmer, R.M.J., Ferrige, A.g., and Moncada, S. Nitric oxide release accounts for
the biological activity of endothelium-derived relaxing factor. Nature 1987, 327 ,
524-526.
84 Schopfer, M.P., Wang, J., and Karlin, K.d. Bioinspired heme, heme/nonheme
diiron, heme/copper, and inorganic NO x chemistry: · NO(g) oxidation, peroxynitrite-
metal chemistry, and
· NO(g) reductive coupling. Inorg. Chem. 2010, 49 ,
6267-6282.
85 Ullrich, V. and Kissner, R. Redox signaling: bioinorganic chemistry at its best. J.
Inorg. Biochem. 2006, 100 , 2079-2086.
86 Rafikova, O., Rafikov, R., and Nudler, E. Catalysis of S-nitrosothiols formation
by serum albumin: the mechanism and implication in vascular control. Proc. Natl.
Acad. Sci. U.S.A. 2002, 99 , 5913-5918.
87 Nedospasov, A., Rafikov, R., Beda, N., and Nudler, E. An autocatalytic mechanism
of protein nitrosylation. Proc. Natl. Acad. Sci. U.S.A. 2000, 97 , 13543-13548.
88 Hughes, M.N. Chemistry of nitric oxide and related species. Method Enzymol.
2008, 436 , 3-19.
89 Abbas, K., Breton, J., Planson, A.g., Bouton, C., Bignon, J., Seguin, C., Riquier,
S., Toledano, M.B., and drapier, J.C. Nitric oxide activates an Nrf2/sulfiredoxin
antioxidant pathway in macrophages. Free Radic. Biol. Med. 2011, 51 , 107-114.
90 Santolini, J. The molecular mechanism of mammalian NO-synthases: a story of
electrons and protons. J. Inorg. Biochem. 2011, 105 , 127-141.
91 Arikawa, y. and Onishi, M. Reductive N-N coupling of NO molecules on transi-
tion metal complexes leading to N 2 O. Coord. Chem. Rev. 2012, 256 , 468-478.
92 Moncada, S., Palmer, R.M.J., and Higgs, E.A. Nitric oxide: physiology, pathophysi-
ology, and pharmacology. Pharmacol. Rev. 1991, 43 , 109-142.
93 dedon, P.C. and Tannenbaum, S.R. Reactive nitrogen species in the chemical
biology of inflammation. Arch. Biochem. Biophys 2004, 423 , 12-22.
94 Favaloro, J.L. and Kemp-Harper, B.K. The nitroxyl anion (HNO) is a potent
dilator of rat coronary vasculature. Cardiovasc. Res. 2007, 73 , 587-596.
95 Andrews, K.L., Irvine, J.C., Tare, M., Apostolopoulos, J., Favaloro, J.L.,
Triggle, C.R., and Kemp-Harper, B.K. A role for nitroxyl (HNO) as an
Search WWH ::




Custom Search