Chemistry Reference
In-Depth Information
304 Liessmann, M., Hansmann, B., Blachly, P.g., Francisco, J.S., and Abel, B. Primary
steps in the reaction of OH radicals with amino acids at low temperatures in laval
nozzle expansions: perspectives from experiment and theory. J. Phys. Chem. A
2009, 113 , 7570-7575.
305 Doan, H.Q., Davis, A.c., and Francisco, J.S. Primary steps in the reaction of OH
radicals with peptide systems: perspective from a study of model amides. J. Phys.
Chem. A 2010, 114 , 5342-5357.
306 Hawkins, c.L. and Davies, M.J. EPR studies on the selectivity of hydroxyl radical
attack on amino acids and peptides. J. Chem. Soc. Perkin Trans. 2 1998,
2617-2622.
307 Davies, M.J. The oxidative environment and protein damage. Biochem. Biophys.
Acta—Proteins Proteomics 2005, 1703 , 93-109.
308 Morgan, P.E., Pattison, D.I., and Davies, M.J. Quantification of hydroxyl radical-
derived oxidation products in peptides containing glycine, alanine, valine, and
proline. Free Radic. Biol. Med. 2012, 52 , 328-339.
309 xu, g. and chance, M.R. Radiolytic modification and reactivity of amino acid
residues serving as structural probes for protein footprinting. Anal. Chem. 2005,
77 , 4549-4555.
310 Hiller, K.-O., Masloch, B., göbl, M., and Asmus, K.D. Mechanism of the OH ·
radical induced oxidation of methionine in aqueous solution. J. Am. Chem. Soc.
1981, 103 , 2734-2743.
311 Schöneich, c. and yang, J. Oxidation of methionine peptides by Fenton systems:
the importance of peptide sequence, neighbouring groups and EDTA. J. Chem.
Soc. Perkin Trans. 2 1996, 5 , 915-924.
312 Schöneich, c., Pogocki, D., Hug, g.L., and Bobrowski, K. Free radical reactions
of methionine in peptides: mechanisms relevant to β-amyloid oxidation and
Alzheimer's disease. J. Am. Chem. Soc. 2003, 125 , 13700-13713.
313 Hong, J. and Schöneich, c. The metal-catalyzed oxidation of methionine in pep-
tides by Fenton systems involves two consecutive one-electron oxidation pro-
cesses. Free Radic. Biol. Med. 2001, 31 , 1432-1441.
314 Brunelle, P. and Rauk, A. One-electron oxidation of methionine in peptide envi-
ronments: the effect of three-electron bonding on the reduction potential of the
radical cation. J. Phys. Chem. A 2004, 108 , 11032-11041.
315 Asmus, K. S-Centered Radicals . John Wiley & Sons, New york, 1999.
316 Hug, g.L., Bobrowski, K., Pogocki, D., Marciniak, B., Schöneich, c., and Hörner,
g. Factor analysis of transient spectra. Free radicals in cyclic dipeptides contain-
ing methionine. Res. Chem. Intermed. 2009, 35 , 431-442.
317 Francisco-Marquez, M. and galano, A. Role of the sulfur atom on the reactivity
of methionine toward OH radicals: comparison with norleucine. J. Phys. Chem.
B 2009, 113 , 4947-4952.
318 Ji, W.-F., Li, Z.-L., Shen, L., Kong, D.-x., and Zhang, H.-y. Density functional
theory methods as powerful tools to elucidate amino acid oxidation mechanisms.
A case study on methionine model peptide. J. Phys. Chem. B 2007, 111 ,
485-489.
319 Qu, N., guo, L.-H., and Zhu, B.-Z. An electrochemical biosensor for the detection
of tyrosine oxidation induced by Fenton reaction. Biosens. Bioelectron. 2011, 26 ,
2292-2296.
Search WWH ::




Custom Search