Chemistry Reference
In-Depth Information
123 Nivière, V., Asso, M., Weill, c.O., Lombard, M., guigliarelli, B., Favaudon, V., and
Houée-Levin, c. Superoxide reductase from Desulfoarculus baarsii : identification
of protonation steps in the enzymatic mechanism. Biochemistry 2004, 43 ,
808-818.
124 chen, L., Sharma, P., Le gall, J., Mariano, A.M., Teixeira, M., and xavier, A.V. A
blue non-heme iron protein from Desulfovibrio gigas . Eur. J. Biochem. 1994, 226 ,
613-618.
125 Emerson, J.P., coulter, E.D., cabelli, D.E., Phillips, R.S., and Kurtz, D.M., Jr.
Kinetics and mechanism of superoxide reduction by two-iron superoxide reduc-
tase from Desulfovibrio vulgaris . Biochemistry 2002, 41 , 4348-4357.
126 clay, M.D., Jenney, F.E., Jr., Hagedoorn, P.L., george, g.N., Adams, M.W.W., and
Johnson, M.K. Spectroscopic studies of Pyrococcus furiosus superoxide reduc-
tase: implications for active-site structures and the catalytic mechanism. J. Am.
Chem. Soc. 2002, 124 , 788-805.
127 Bonnot, F., Molle, T., Ménage, S., Moreau, y., Duval, S., Favaudon, V., Houée-
Levin, c., and Nivière, V. control of the evolution of iron peroxide intermediate
in superoxide reductase from Desulfoarculus baarsii . Involvement of lysine 48 in
protonation. J. Am. Chem. Soc. 2012, 134 , 5120-5130.
128 Osawa, M., yamakura, F., Mihara, M., Okubo, y., yamada, K., and Hiraoka, B.y.
conversion of the metal-specific activity of Escherichia coli Mn-SOD by site-
directed mutagenesis of gly165Thr. Biochim. Biophys. Acta—Proteins Proteomics
2010, 1804 , 1775-1779.
129 Falahati, M., Ma'Mani, L., Saboury, A.A., Shafiee, A., Foroumadi, A., and Badiei,
A.R. Aminopropyl-functionalized cubic Ia3d mesoporous silica nanoparticle as
an efficient support for immobilization of superoxide dismutase. Biochim.
Biophys. Acta—Proteins Proteomics 2011, 1814 , 1195-1202.
130 Davies, M.J. Singlet oxygen-mediated damage to proteins and its consequences.
Biochem. Biophys. Res. Commun. 2003, 305 , 761-770.
131 Ragàs, x., cooper, L.P., White, J.H., Nonell, S., and Flors, c. Quantification of
photosensitized singlet oxygen production by a fluorescent protein. Chemphy-
schem 2011, 12 , 161-165.
132 chin, K.K., Trevithick-Sutton, c.c., Mccallum, J., Jockusch, S., Turro, N.J., Scaiano,
J.c., Foote, c.S., and garcia-garibay, M.A. Quantitative determination of singlet
oxygen generated by excited state aromatic amino acids, proteins, and immuno-
globulins. J. Am. Chem. Soc. 2008, 130 , 6912-6913.
133 Ronsein, g.E., Oliveira, M.c.B., Miyamoto, S., Medeiros, M.H.g., and Di Mascio,
P. Tryptophan oxidation by singlet molecular oxygen [O 2 ( 1 Δ g )]: mechanistic
studies using 18 O-labeled hydroperoxides, mass spectrometry, and light emission
measurements. Chem. Res. Toxicol. 2008, 21 , 1271-1283.
134 Reynoso, E., Biasutti, M.A., and garcía, N.A. Kinetics of the photosensitized
oxidation of chymotrypsin in different media. Amino Acids 2008, 34 , 61-68.
135 Fang, y. and Liu, J. Reaction of protonated tyrosine with electronically excited
singlet molecular oxygen (a1Δg): an experimental and trajectory study. J. Phys.
Chem. A 2009, 113 , 11250-11261.
136 Schweitzer, c. and Schmidt, R. Physical mechanisms of generation and deactiva-
tion of singlet oxygen. Chem. Rev. 2003, 103 , 1685-1757.
Search WWH ::




Custom Search