Chemistry Reference
In-Depth Information
80 Egan, T.J., Barthakur, S.R., and Aisen, P. catalysis of the Haber-Weiss reaction
by iron-diethylenetriaminepentaacetate. J. Inorg. Biochem. 1992, 48 , 241-249.
81 cyr, J.E. and Bielski, B.H.J. The reduction of ferrate(VI) to ferrate(V) by ascor-
bate. Free Radic. Biol. Med. 1991, 11 , 157-160.
82 Duerr, K., Olah, J., Davydov, R., Kleimann, M., Li, J., Lang, N., Puchta, R., Hübner,
E., Drewello, T., Harvey, J.N., Jux, N., and Ivanovi ć -Burmazovi ć , I. Studies on an
iron(III)-peroxo porphyrin. Iron(III)-peroxo or iron(II)-superoxo? Dalton Trans.
2010, 39 , 2049-2056.
83 Dürr, K., Jux, N., Zahl, A., Van Eldik, R., and Ivanovi ć -Burmazovi ć , I. Volume
profile analysis for the reversible binding of superoxide to form iron(II)-superoxo/
iron(III)-peroxo porphyrin complexes. Inorg. Chem. 2010, 49 , 11254-11260.
84 Peretz, P., Solomon, D., Weinraub, D., and Faraggi, M. chemical properties of
water-soluble porphyrins 3. The reaction of superoxide radicals with some metal-
loporphyrins. Int. J. Radiat. Biol. 1982, 42 , 449-456.
85 Solomon, D., Peretz, P., and Faraggi, M. chemical properties of water-soluble
porphyrins. 2. The reaction of iron(III) tetrakis(4-N-methylpyridyl)porphyrin
with the superoxide radical dioxygen couple. J. Phys. Chem. 1982, 86 , 1842-
1849.
86 groni, S., Blain, g., guillot, R., Policar, c., and Anxolabéhère-Mallart, E. Reactiv-
ity of Mn II with superoxide. Evidence for a [Mn III OO] + unit by low-temperature
spectroscopies. Inorg. Chem. 2007, 46 , 1951-1953.
87 Ivanovi ć -Burmazovi ć , I. and Filipovi ć , M.R. Reactivity of manganese superoxide
dismutase mimics toward superoxide and nitric oxide. Selectivity versus cross-
reactivity. Adv. Inorg. Chem. 2012, 64 , 53-95.
88 cudd, A. and Fridovich, I. Electrostatic interactions in the reaction mechanism
of bovine erythrocyte superoxide dismutase. J. Biol. Chem. 1982, 257 ,
11443-11447.
89 Fisher, c.L., cabelli, D.E., Tainer, J.A., Hallewell, R.A., and getzoff, E.D. The role
of arginine 143 in the electrostatics and mechanism of cu,Zn superoxide dis-
mutase: computational and experimental evaluation by mutational analysis. Pro-
teins Struct. Funct. Genet. 1994, 19 , 24-34.
90 getzoff, E.D., Tainer, J.A., Weiner, P.K., Kollman, P.A., Richardson, J.S., and
Richardson, D.c. Electrostatic recognition between superoxide and copper, zinc
superoxide dismutase. Nature 1983, 306 , 287-290.
91 getzoff, E.D., cabelli, D.E., Fisher, c.L., Parge, H.E., Viezzoli, M.S., Banci, L., and
Hallewell, R.A. Faster superoxide dismutase mutants designed by enhancing
electrostatic guidance. Nature 1992, 358 , 347-351.
92 Ellerby, L.M., cabelli, D.E., graden, J.A., and Valentine, J.S. copper-zinc super-
oxide dismutase: why not pH-dependent? J. Am. Chem. Soc. 1996, 118 ,
6556-6561.
93 Koppenol, W.H. Superoxide dismutase and oxygen toxicity. Clin. Respir. Physiol.
1981, 17 , 85-89.
94 Keele, B.B., Jr., Mccord, J.M., and Fridovich, I. Superoxide dismutase from Esch-
erichia coli B. A new manganese-containing enzyme. J. Biol. Chem. 1970, 245 ,
6176-6181.
Search WWH ::




Custom Search