Chemistry Reference
In-Depth Information
134 Wilson, S.C., Wu, C., Andriychuck, l.A., Martin, J.M., Brasel, T.l., Jumper, C.A.,
and Straus, D.C. Effect of chlorine dioxide gas on fungi and mycotoxins
associated with sick building syndrome. Appl. Environ. Microbiol. 2005, 71 ,
5399-5402.
135 Southwell, K.l. Chlorine dioxide dry fumigation in special collection libraries—a
case study. Libr. Arch. Secur. 2003, 18 , 39-49.
136 Buttner, M.P., Cruz, P., Stetzenback, l.D., Klima-Comba, A.K., Stevens, V.l., and
Cronin, T.D. Determination of the efficacy of two building decontamination strat-
egies by surface sampling with culture and quantitative PCR analysis. Appl.
Environ. Microbiol. 2004, 70 , 4740-4747.
137 Hubbard, H., Poppendieck, D., and Corsi, R.l. Chlorine dioxide reactions with
indoor materials during building disinfection: surface uptake. Environ. Sci.
Technol. 2009, 43 , 1329-1335.
138 Junli, H., li, W., Nenqi, R., li, l.x., Fun, S.R., and guanle, y. Disinfection effect
of chlorine dioxide on viruses, algae and animal planktons in water. Water Res.
1997, 31 , 455-460.
139 lim, M.y., Kim, J.-M., and Ko, g. Disinfection kinetics of murine norovirus using
chlorine and chlorine dioxide. Water Res. 2010, 44 , 3243-3251.
140 Korich, D.g., Mead, J.R., Madore, M.S., Sinclair, N.A., and Sterling, C.R. Effects
of ozone, chlorine dioxide, chlorine, and monochloramine on Cryptosporidium
parvum oocyst viability. Appl. Environ. Microbiol. 1990, 56 , 1423-1428.
141 Shams, A.M., O'Connell, H., Arduino, M.J., and Rose, l.J. Chlorine dioxide inac-
tivation of bacterial threat agents. Lett. Appl. Microbiol. 2011, 53 , 225-230.
142 Umile, T.P. and groves, J.T. Catalytic generation of chlorine dioxide from chlorite
using a water-soluble manganese porphyrin. Angew. Chem. Int. Ed. 2011, 50 ,
695-698.
143 Zdilla, M.J., lee, A.Q., and Abu-Omar, M.M. Bioinspired dismutation of chlorite
to dioxygen and chloride catalyzed by a water-soluble iron porphyrin. Angew.
Chem. Int. Ed. 2008, 47 , 7697-7700.
144 Zdilla, M.J., lee, A.Q., and Abu-Omar, M.M. Concerted dismutation of chlorite
ion: water-soluble iron-porphyrins as first generation model complexes for chlo-
rite dismutase. Inorg. Chem. 2009, 48 , 2260-2268.
145 Shahangian, S. and Hager, l.P. The reaction of chloroperoxidase with chlorite and
chlorine dioxide. J. Biol. Chem. 1981, 256 , 6034-6040.
146 Ingram, P.R., Homer, N.Z.M., Smith, R.A., Pitt, A.R., Wilson, C.g., Olejnik, O.,
and Spickett, C.M. The interaction of sodium chlorite with phospholipids and
glutathione: a comparison of effects in vitro, in mammalian and in microbial cells.
Arch. Biochem. Biophys. 2003, 410 , 121-133.
147 lee, A.Q., Streit, B.R., Zdilla, M.J., Abu-Omar, M.M., and DuBois, J.l. Mecha-
nism of and exquisite selectivity for O-O bond formation by the heme-dependent
chlorite dismutase. Proc. Natl Acad. Sci. U.S.A. 2008, 105 , 15654-15659.
148 goblirsch, B., Kurker, R.C., Streit, B.R., Wilmot, C.M., and DuBois, J.l. Chlorite
dismutases, DyPs, and EfeB: 3 microbial heme enzyme families comprise the
CDE structural superfamily. J. Mol. Biol. 2011, 408 , 379-398.
149 Streit, B.R., Blanc, B., lukat-Rodgers, g.S., Rodgers, K.R., and Dubois, J.l. How
active-site protonation state influences the reactivity and ligation of the heme in
chlorite dismutase. J. Am. Chem. Soc. 2010, 132 , 5711-5724.
Search WWH ::




Custom Search