Civil Engineering Reference
In-Depth Information
2
lg 2S ac
d 2 ¼ lg N c
1
a 1
a 0c þ a 2 S lower
d 2
S lower
d 2
þ a 3
þ a 4 lg d
a 1
!
þ a 5 lg z þ lg f L
:
ð 2 : 111 Þ
with N j ¼ N D ¼ 2 10 6 .
With ( 2.110 ), the number of load cycles will be calculated, directly valid up to
2 9 10 6 for all quantiles c. Numbers of load cycles above that should be corrected
with ( 2.104 ). By using the limiting number of load cycles 2 9 10 6 for all quan-
tiles, the standard deviation will be—as in reality—strongly extended in the region
above the limiting number of load cycles.
For the practical calculation of the numbers of load cycles the Excel-program
SWINGSP2.XLS can be used.
Example 2.15: Number of load cycles
Data:
Warrington-Seale rope 6 9 36—IWRC—sZ
Wire rope diameter d = 20 mm, nominal strength R 0 = 1, 770 N/mm 2 ,
lubricated
Rope length L = 120 m, terminated with resin sockets
The fluctuating tensile forces are
Lower tensile force S lower = 30 kN, S lower /d 2 = 75 N/mm 2
Upper tensile force S upper = 80 kN
The range of the specific force is
2S a = d 2 ¼ S upper S lower
d 2
¼ 125 N/mm 2 :
Results:
Using ( 2.110 ) and the constants from Table 2.11 , the numbers of load cycles are
N 50 ¼ 3 ; 690 ; 000
N 10 ¼ 1 ; 410 ; 000
N 1 ¼ 680 ; 000
From these numbers only
N 1 ¼ 680 ; 000
and
N 10 ¼ 1 ; 410 ; 000
are directly valid. The mean number of loading cycles—greater than 2 9 10 6 —has
to be corrected. For that, using ( 2.111 ), the limit range of the specific tensile force is
2S aD50 = d 2 ¼ 146 N/mm 2 :
Search WWH ::




Custom Search