Chemistry Reference
In-Depth Information
It is now apparent that most of the known nitrenium chemistry in biological,
environmental, and synthetic chemistry occurs via singlet state species. Indeed aside
from NH 2 รพ , most nitrenium ions that are stable enough to have a discrete existence
appear to have singlet ground states (i.e., the same factors that stabilize nitrenium
ions toward rearrangements, and other reaction usually stabilizes the singlet state
relative to the triplet). However, several interesting classes of ground state triplet
nitrenium ions have been identified through calculations, such as the meta donor
substituted phenyl nitrenium ions, certain heteroaromatic nitrenium ions, and
nitrenium ions that are sterically constrained to have geometries that favor the
triplet state. The challenge in the next few years will be to find ways of exper-
imentally characterizing these species.
REFERENCES
1. (a) Abramovitch, R. A.; Jeyaraman, R. Nitrenium ions. in Azides and Nitrenes:
Reactivity and Utility , Scriven, E. F. V. Ed., Academic Press, Orlando, FL, 1984 ,
pp. 297-357. (b) Novak, M.; Rajagopal, S. N-Arylnitrenium ions. in Advances in
Physical Organic Chemistry , Academic Press Ltd, London, 2001 , Vol. 36 , pp. 167-254.
(c) Falvey, D. E. Nitrenium Ions. in Reactive Intermediate Chemistry , Moss, R. A.,
Platz, M. S., Jones Jr., M., Eds., Wiley, Hoboken, NJ, 2004 , pp. 593-650.
2. Falvey, D. E. J. Phys. Org. Chem. 1999 , 12 , 589-596.
3. (a) Hirai, K.; Itoh, T.; Tomioka, H. Chem. Rev.
2009 , 109 , 3275-3332. (b) Tomioka, H.
Triplet carbenes. in Reactive Intermediate Chemistry , Moss, R. A., Platz, M. S., Jones Jr.,
M. Eds., Wiley, Hoboken, NJ, 2004 , pp. 375-462.
4. (a) Platz, M. S. Nitrenes. in Reactive Intermediate Chemistry , Moss, R. A., Platz, M. S.,
Jones, Jr.M. Eds., Wiley, Hoboken, NJ, 2004 , pp. 501-560. (b) Borden, W. T.; Gritsan,
N. P.; Hadad, C. M.; Karney, W. L.; Kemnitz, C. R.; Platz, M. S. Acc. Chem. Res.
2000
, 33 ,
765-771.
5. Lahti, P. M.; Magnetic Properties of Organic Materials . Marcel Dekker, New York, 1999 .
6. (a) Kato, D.; Inoue, K.; Akimitsu, J.; Abe, J. Chem. Lett. 2008 , 37 , 694-695. (b) Itoh, T.;
Hirai, K.; Tornioka, H. Bull. Chem. Soc. Jpn. 2007 , 80 , 138-157. (c) Rajca, A. The
physical organic chemistry of very high-spin polyradicals. in Advances in Physical
Organic Chemistry , Elsevier Academic Press Inc., San Diego, CA,
2005 , Vol. 40,
pp. 153-199.
7. Heller, H. E.; Hughes, E. D.; Ingold, C. K. Nature 1951 , 168 , 909-910.
8. (a) Gassman, P. G.; Campbell, G. A. J. Am. Chem. Soc. 1972 , 94 , 3891-96. (b) Gassman,
P. G.; Frederic, R. C.; Campbell, G. A. J. Am. Chem. Soc. 1972 , 94 , 3884-90.
9. Gassman, P. G. Acc. Chem. Res. 1970 , 3 , 26-33.
10. (a) Miller, J. A. Cancer Res . 1970 , 30 , 559-576. (b) Kadlubar, F. F.; Beland, F. A.
Chemical-properties of ultimate carcinogenic metabolites of arylamines and arylamides.
in Polycyclic Hydrocarbons and Carcinogenesis , Harvey, R.G. Ed., American Chemical
Society, Washington, DC, ACS Symposium Series, 1985 , 283 , 341-370. (c) Skipper, P. L.;
Kim, M. Y.; Sun, H. L. P.; Wogan, G. N.; Tannenbaum, S. R. Carcinogenesis 2010 , 31 ,
50-58. (d) Yang, Z.Z.; Qi, S. F.; Zhao, D. X.; Gong, L. D. J. Phys. Chem. B 2009 , 113 (1),
254-259.
Search WWH ::




Custom Search