Biology Reference
In-Depth Information
37. Ryndak MB, Wang S et al (2010) The Mycobacterium tuberculosis high affinity iron
importer, IrtA, contains an FAD-binding domain. J Bacteriol 192:861-869
38. Faranh A, Kumar S et al (2008) Mechnistic insights into a novel exporter-importer system of
Mycobacterium tuberculosis unravel its role in trafficking of iron. PLoS One 3:e2087
39. Santhanagipaken S, Rodgriguez GM (2011) Examining the role of Rv2895c (ViuB) in iron
acquisition in Mycobacterium tuberculosis . Tuberculosis 92:60-62
40. Wells RM, Jones CM, Xi Z et al (2013) Discovery of a siderophore export system essential
for virulence of Mycobacterium tuberculosis . PLoS Pathog 9(1-14):e1003120
41. Chim N, Iniquez P et al (2010) Unusual diheme conformation of the heme-degrading protein
from Mycobacterium tuberculosis . J Mol Biol 395:595-608
42. Jones CM, Neiderweis M (2011) Mycobacterium tuberculosis can utilize heme as an iron
source. J Bacteriol 193:1767-1770
43. Owens CP, Du J et al (2012) Characterization of heme ligation properties of Rv0203,
a secreted heme binding protein involved in Mycobacterium tuberculosis heme uptake.
Biochemistry 51:1518-1531
44. Deshpande RG, Khan MB et al (1997) Isolation of a contact-dependent hemolysin from
Mycobacterium tuberculosis . M Med Microbiol 46:233-238
45. Rindi L, Lari BN et al (2003) Most human isolates of Mycobacterium avium Mav-A and
Mav-B are strong producers of hemolysin, a putative virulence factor. J Clin Microiol
41:5738-5740
46. Matzanke BF, Böhnke R et al (1997) Iron uptake and intacellular metal transfer in mycobac-
teria mediated by xenosiderophores. Biometals 10:193-203
47. Reddy PV, Purl RV et al (2012) Iron storage proteins are essential for the survival and patho-
genesis of Mycobacterium tuberculosis in THP-1 macrophages and the guinea pig model of
infection. J Bacteriol 194:567-575
48. Pandey R, Rodriguez GM (2012) A ferritin mutant of Mycobacterium tuberculosis is highly
susceptible to killing by antibiotics and is unable to establish a chronic infection in mice.
Infec Immun 80:3650-3659
49. Jones CM, Neiderweis M (2010) Role of porins in iron uptake by Mycobacterium smegmatis .
J Bacteriol 192:6411-6417
50. Evans SL, Arceneaux JEL et al (1986) Ferrous iron transport in Streptococcus mutans . J
Bacteriol 168:1096-1099
51. Homuth M, Valentin-Weigand P et al (1998) Identification and characterization of a
novel extracellular ferric reductase from Mycobacterium paratuberculosis . Infect Immun
66:710-716
52. Aranha H, Evans SL et al (1982) Effect of trace metals on growth of Streptococcus mutans in
a teflon chemostat. Infect Immun 35:456-460
53. Strachan RC, Aranha H et al (1982) Teflon chemostat for studies of trace metal metabolism
in Streptococcus mutans and other bacteria. Appl Environ Microbiol 43:257-260
54. McCarthy CM (1983) Continuous culture of Mycobacterium avium limited for ammonia.
Amer Rev Respir Dis 127:193-197
55. Ojha A, Hatful GF (2007) The role of iron in Mycobacterium smegmatis biofilm formation:
the exochelin siderophore is essential in limiting iron conditions for biofilm formation but
not for planktonic growth. Mol Microbiol 66:468-483
Search WWH ::




Custom Search