Biology Reference
In-Depth Information
accumulation of the solute. Passive transport can involve simple diffusion or facilitated
carriers including ionophores and channels. Active transport comes in many, often complex
forms. Examples of active transport include primary active transport (uniport), secondary
active transport (co-transport, antiport), and group translocation.
Besides the multitude of transport systems, transport can be accomplished by gap junc-
tions, receptor mediated endocytosis, phagocytosis, pinocytosis, exocytosis, and apoptotic
membrane blebbing.
The last chapter of this topic (Chapter 15) will discuss some biological aspects of
membrane structure including how liposomes can be used for drug delivery. Also, the
'bad' dietary fatty acids (trans fatty acids) will be contrasted with a 'good' fatty acid (the
omega-3 fatty acid docosahexaenoic acid), as they impact human health.
References
[1] Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD. Principles of membrane transport. In: Molecular
Biology of the Cell. 3rd ed. New York: Garland; 1994.
[2] Blok MC, van Deenen LLM, de Gier J. Effect of the gel to liquid crystalline phase transition on the osmotic
behaviour of phosphatidylcholine liposomes. Biochim Biophys Acta 1976;433:1
e
12.
[3] Miller FP, Vandome AF, McBrewster J. Ficks Laws of Diffusion. VDM; 2010.
[4] Water Systems: Aqua Technology for the 21 st Century. Introductory information on reverse osmosis.
[5] Bangham AD, de Gier J, Greville GD. Osmotic properties and water permeability of phospholipid liquid
crystals. Chem Phys Lipids 1967;1:225
46.
[6] Gier De. Osmotic behaviour and permeability properties of
e
liposomes (Review). Chem Phys Lipids
96.
[7] Baldwin SA, editor. Membrane Transport: A Practical Approach. USA: Oxford University Press; 2000.
[8] Alberts B, Bray D, Johnson A, Lewis J, Raff M, Roberts K, et al. Comparison of passive and active transport. In:
Essential Cell Biology. 2nd ed. Taylor Francis: Garland; 2004 [Figure 12.4].
[9] Huang S, Czech MP. The GLUT4 glucose transporter. Cell Metab 2007;5:237
1993;64:187
e
52.
[10] Biologia Medica. 2010. Transporte de Glucosa: GLUT y SGLT Seminarios de Biolog´a Celular y Molecular
e
e
USMP Filial Norte. University of San Martin de Porres, Peru.
[11] Lippiat JD. Potassium channels. Methods and protocols. In: Series in Methods in Molecular Biology, vol. 491.
New York, NY: Humana; 2009.
[12] Doyle DA, Morais CJ, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, et al. The structure of the potassium
channel: Molecular basis of K þ conduction and selectivity. Science 1998;280:69
77.
[13] Goldin AL. Resurgence of sodium channel research. Annu Rev Physiol 2001;63:871
e
94.
[14] Penzotti JL, Fozzard HA, Lipkind GM, Dudley SC. Differences in Saxitoxin and tetrodotoxin binding revealed
by mutagenesis of the Na þ channel outer vestibule. Biophys J 1998;75(6):2647
e
57.
[15] Noda Y, Sohara E, Ohta E, Sasaki S. Nephrology. Aquaporins in kidney pathophysiology. Nat Rev
2010;6:168
e
e
78.
[16] Hill AE, Shachar-Hill B, Shachar-Hill Y. What are aquaporins for? J Membr Biol 2004;197:1
32.
[17] Vetenskapsakademien Kungl, The Royal Swedish Academy of Sciences. The Nobel Prize in Chemistry. Peter
Agre, Roderick MacKinnon, www.nobelprize.org ; 2003.
[18] Gerk P. Active Transport of Drugs Across Membranes. Enna SJ and Bylund DB, Editors-in-Chief. xPharm: The
Comprehensive Pharmacology Reference. New York: Elsevier; 2007. p. 1
e
6.
[19] Lopina OD. Na þ ,K þ ATPase: Structure, mechanism, and regulation. Membr Cell Biol 2000;13:721
e
e
44.
[20] Wright EM. Renal Na þ -glucose cotransporters. Am J Physiol, Renal Physiol 2001;280:F10
8.
[21] Jakubowski H, editor. Chapter 9. Signal Transduction. A. Energy transduction: Uses of ATP, http://
employees.csbsju.edu/hjakubowski/classes/ch331/signaltrans/olsignalenergy.html ; 2002.
[22] Martin SA. Nutrient transport by ruminal bacteria: a review. J Anim Sci 1994;72:3019
e
31.
[23] Mitchell P, Moyle J. Group-translocation: a consequence of enzyme-catalysed group-transfer. Nature
1958;182:372
e
e
3.
Search WWH ::




Custom Search