Geoscience Reference
In-Depth Information
2
2
2
π
r 4 cos 3
Δ
I 33 =
ρ
φ
d
λ
d
φ
d r
(45)
r s
0
2
2
2
π
r 3 u cos 2
h 3 =
ρ
φ
d
λ
d
φ
d r
.
(46)
r s
0
Integration Over Pressure Increments
If a vertical atmospheric pressure gradient is assumed on the basis of the hydrostatic
equation d p
=− ρ
g d r , the radial integral in the AAM formulae can be written
in terms of pressure increments, see Barnes et al. ( 1983 ). g
=
(
)
is the gravity
acceleration and p s , introduced in the integration limits, denotes the surface pressure.
g
r
2
2
p s
2
π
r 4
g
Δ I
cos 2
e i λ d
=−
sin
φ
φ
λ
d
φ
d p
(47)
0
0
2
2
p s
2
π
r 3
g (
h
e i λ d
=−
u sin
φ +
i v
)
cos
φ
λ
d
φ
d p
(48)
0
0
2
p s
2
π
r 4
g
cos 3
Δ
I 33 =
φ
d
λ
d
φ
d p
(49)
2
0
0
2
p s
2
π
r 3
g
u cos 2
h 3 =
φ
d
λ
d
φ
d p
.
(50)
2
0
0
Integration Over Pressure Increments, Constant Radius and Gravity
Given the relatively small extension of any surficial fluid layer compared to Earth's
radius, i t is justified to model the atmosp he re as thin spherical shell with constant
radius r and constant gravity acceleration g . This thin layer approximation enables
us to directly reduce the pressure integral of the matter terms in Eqs. ( 47 ) and ( 49 )
to the plain surface pressure p s (Barnes et al. 1983 )
2
r 4
g
2
π
Δ I
cos 2
e i λ d
=−
p s sin
φ
φ
λ
d
φ
(51)
2
0
2
r 3
g
p s
2
π
h
e i λ d
=−
(
u sin
φ +
i v
)
cos
φ
λ
d
φ
d p
(52)
2
0
0
2
r 4
g
2
π
p s cos 3
Δ
I 33 =
φ
d
λ
d
φ
(53)
2
0
2
r 3
g
p s
2
π
u cos 2
h 3 =
φ
d
λ
d
φ
d p
.
(54)
2
0
0
 
Search WWH ::




Custom Search