Information Technology Reference
In-Depth Information
5 Conclusions
Simulations of the Chiappe di Sarno-Curti debris flow, occurred at Sarno in May
1998, proved to be consistent with the observed path of the actual landslide,
suggesting that SCIDDICA could be usefully applied in debris-flows hazard analyses.
The complexity of this debris landslide with avalanche features urged our research
group “Empedocles” to examine critically the methods developed [4] for modelling
macroscopic phenomena with surface flows [5], [6], [13], [14]. Corrections and
extensions, here adopted, can be extended to other similar phenomena. Significant
improvements, in our opinion, could be added. A limit of this approach is the implicit
managing of the time and an understimation of inertial effects; future innovations will
concern this problem.
Acknowledgements. The development of the the SCIDDICA model (Sarno release)
and performed simulations were partially funded by Regione Campania, Italy ( Project
“Sviluppo di una Modellistica Sperimentale-Temporale dei Processi Evolutivi dell'
Ambiente e del Territorio per la Mitigazione dei Rischi” ). The authors thank Ms M.
Adinolfi as a supporter for the carried out project; Ms L. Monti for the project
scientific organisation.
References
1.
von Neumann, J.: Theory of self reproducing automata. Uni. of Illinois Press, Urbana
(1966)
2.
Worsch, T.: Simulation of Cellular Automata. FGCS, 16, (1999) 157-170
3.
Toffoli, T., Margolus, N.: Cellular Automata Machines. MIT Press, Cambridge (1987)
4.
Di Gregorio, S., Serra R.: An empirical method for modelling and simulating some
complex macroscopic phenomena by cellular automata. FGCS, 16, (1999) 259-271
5.
Barca, D., Crisci, G.M., Di Gregorio, S., Nicoletta, F.P.: Cellular Automata for simulating
lava flows: a method and examples of the Etnean eruptions. Transport Theory and
Statistical Physics, 23 1-3 (1994), 195-232
6.
D Ambrosio, D., Di Gregorio, S., Gabriele, S., Gaudio R.: A Cellular Automata Model for
Soil Erosion by Water. Physics and Chemistry of the Earth, Vol. 26(1), (2001), pp. 33-39.
7.
Succi, S., Benzi, R., Higuera, F.: The lattice Boltzmann equation: a new tool for
computational fluid dynamics. Physica 47 D (1991) 219-230
8.
Cruden, D.M., Varnes, D.J.: Landslide Types and Processes. In: Turner, A.K., Schuster,
R.L., (eds.): Landslides: Investigation and Mitigation. Special Report 247, Transportation
Research Board, NRC, National Academy Press, Washington D.C., (1996) 36-75.
9.
Di Gregorio, S., Nicoletta, F., Rongo, R., Sorriso-Valvo, M., Spezzano, G., Talia D.:
Landslide Simulation by Cellular Automata in a Parallel Environment. Mango Furnari, M.
(ed.): Proceedings of 2nd International Workshop “Massive Parallelism: Hardware,
Software and Applications”, World Scientific, Singapore (1995) 392-407
10.
Barca, D., Di Gregorio, S., Nicoletta, F.P., Sorriso-Valvo, M.: A Cellular Space Model for
Flow type Landslides. In: Messina, G., Hamzda, M.H., (eds.): Computers and their
Application for Development. Proc. Int. Symp. IASTED (Taormina), (1986) 30-32
11.
Sassa, K.: Motion of Landslides and Debris Flows. Report for Grant-in-Aid for Scientific
Research by the Jap. Ministry of Edu., Science and Culture (Project No. 61480062),
(1988).
Search WWH ::




Custom Search