Chemistry Reference
In-Depth Information
incorporation of a new base pair into DNA and RNA extends the genetic alphabet. Nature , 343 ,
33-37; (e) Switzer, C., Moroney, S.E., and Benner, S.A. (1993) Enzymic recognition of the base
pair between isocytidine and isoguanosine. Biochemistry , 32 , 10489-10496; (f) Horlacher, J.,
Hottiger, M., Podust, V.N., Huebscher, U., and Benner, S.A. (1995) Recognition by viral and
cellular DNA polymerases of nucleosides bearing bases with nonstandard hydrogen bonding
patterns. Proc. Natl Acad. Sci. USA , 92 , 6329-6333.
29. (a) Kool, E.T. (1998) Replication of non-hydrogen bonded bases by DNA polymerases: A
mechanism for steric matching. Biopolymers , 48 , 3-17; (b) Guckian, K.M., Krugh, T.R., and
Kool, E.T. (1998) Solution structure of a DNA duplex containing a replicable difluorotoluene-
adenine pair. Nat. Struct. Biol. , 11 , 954-959; (c) Kool, E.T., Morales, J.C., and Guckian, K.M.
(2000) Mimicking the structure and function of DNA: insights into DNA stability and replica-
tion. Angew. Chem. Int. Ed. , 39 , 990-1009; (d) Ogawa, A.K., Wu, Y., McMinn et al. (2000)
Efforts toward the expansion of the genetic alphabet: information storage and replication with
unnatural hydrophobic base pairs. J. Am. Chem. Soc. , 122 , 3274-3287; (e) Wu, Y., Ogawa,
A.K., Berger, M. et al. (2000) Efforts toward expansion of the genetic alphabet: optimization of
interbase hydrophobic interactions. J. Am. Chem. Soc. , 122 , 7621-7632.
30. (a) Rakitin, A., Aich, P., Papadopoulos, C. et al. (2001) Metallic conduction through engineered
DNA: DNA nanoelectronic building blocks. Phys. Rev. Lett. , 86 , 3670-3673; (b) Aich, P.,
Labiuk, S.L., Tari, L.W., et al. (1999) M-DNA: a complex between divalent metal ions and
DNA which behaves as a molecular wire. J. Mol. Biol. , 294 , 477-485; (c) Nokhrin, S.,
Baru, M., and Lee, J.S. (2007) A field-effect transistor from M-DNA. Nanotechnology , 18 ,
095205.
31. (a) Katz, S. (1952) The reversible reaction of sodium thymonucleate and mercuric chloride.
J. Am. Chem. Soc. , 74 , 2238-2245; (b) Katz, S. (1963) The reversible reaction of Hg(II) and
double-stranded polynucleotides a step-function theory and its significance. Biochim. Biophys.
Acta , 68 , 240-253; (c) Buncel, E., Boone, C., Joly, H. et al. (1985) Metal ion-biomolecule
interactions. XII. 1 H and 13 C NMR evidence for the preferred reaction of thymidine over gua-
nosine in exchange and competition reactions with Mercury(II) and Methylmercury(II). Inorg.
Biochem. , 25 , 61-73; (d) Kuklenyik, Z., and Marzilli, L.G. (1996) Mercury(II) site-selective
binding to a DNA hairpin. Relationship of sequence-dependent intra- and interstrand cross-link-
ing to the hairpin-duplex conformational transition. Inorg. Chem. , 35 , 5654-5662; (e) Ono, A.,
and Togashi, H. (2004) Highly selective oligonucleotide-based sensor for mercury(II) in aque-
ous solutions. Angew. Chem. Int. Ed. , 43 , 4300-4302; (f) Miyake, Y., Togashi, H., Tashiro, M.
et al. (2006) Mercury(II)-mediated formation of thymine-Hg(II)-thymine base pairs in DNA
duplexes. J. Am. Chem. Soc. , 128 , 2172-2173; (g) Tanaka, Y., Oda, S., Yamaguchi, H. et al.
(2007) Mercury(II)-mediated formation of thymine-Hg(II)-thymine base pairs in DNA
duplexes. J. Am. Chem. Soc. , 129 , 244.
32. (a) Ono, A., Cao, S., Togashi, H. et al. (2008) Specific interactions between silver(I) ions and
cytosine-cytosine pairs in DNA duplexes. Chem. Commun. , 2008 , 4825-4827; (b) Megger,
D.A. and Muller, J. (2010) Silver(I)-mediated cytosine self-pairing is preferred over hoogsteen-
type base pairs with the artificial nucleobase 1,3-dideaza-6-nitropurine. Nucleosides, Nucleo-
tides Nucleic Acids , 29 , 27-38.
33. (a) Muller, J., Bohme, D., Dupre, N. et al. (2007) Differential reactivity of a and b-2 0 -
deoxyribonucleosides towards protonation and metalation. J. Inorg. Biochem. , 101 , 470-476;
(b) Muller, J., Bohme, D., Lax, P. et al. (2005) Metal ion coordination to azole nucleosides.
Chem. Eur. J. , 11 , 6246-6253.
34. (a) For N -glycosidation methods see: Vorbruggen, H. and Ruh-Polenz, C. (2001) Handbook of
Nucleoside Synthesis , John Wiley & Sons, Inc., New York;(b) For C-glycosidation methods see:
Stambasky, J., Hocek, M., and Kocovsky, P. (2009) C-nucleosides: synthetic strategies and bio-
logical applications. Chem. Rev. , 109 , 6729-6764; (c) Bihovsky, R., Selick, C., and Guisti, I.
Search WWH ::




Custom Search