Chemistry Reference
In-Depth Information
4. Guckian, K.M., Schweitzer, B.A., Ren, R.X.-F. et al. (2000) Factors contributing to aromatic
stacking in water: evaluation in the context of DNA. J. Am. Chem. Soc. , 122 , 2213-2222.
5. Isaksson, J., Acharya, S., Barman, J. et al. (2004) Single-stranded adenine-Rich DNA and RNA
retain structural characteristics of their respective double-stranded conformations and show
directional differences in stacking pattern. Biochemistry , 43 , 15996-16010.
6. Chalikian, T., Volker, J., Plum, G., and Breslauer, K. (1999) A more unified picture for the
thermodynamics of nucleic acid duplex melting: A characterization by calorimetric and volu-
metric techniques. Proc. Natl Acad. Sci. USA , 96 , 7853-7858.
7. Gait, M.J. (ed.) (1990) Oligonucleotide Synthesis: A Practical Approach, IRL, New York.
8. Keren, K., Berman, R.S., and Braun, E. (2004) Patterned DNA metallization by sequence-spe-
cific localization of a reducing agent. Nano Lett. , 4 , 323-326.
9. (a) Niemeyer, C.M. (2001) Nanoparticles, proteins, and nucleic acids: biotechnology meets
materials science. Angew. Chem. Int. Ed. , 40 , 4128-4158; (b) Wengel, J. (2004) Nucleic acid
nanotechnology-towards A ngstrom-scale engineering. Org. Biomol. Chem. , 2 , 277-280;
(c) Storhoff, J.J. and Mirkin, C.A. (1999) Programmed materials synthesis with DNA. Chem.
Rev. , 99 , 1849-1862; (d) Bandy, T.J., Brewer, A., Burns, J.R. et al. (2010) DNA as supra-
molecular scaffold for functional molecules: progress in DNA nanotechnology. Chem. Soc.
Rev. , 40 , 138-148; (e) Sorensen, M.D., Petersen, M., and Wengel, J. (2003) Functionalized
LNA (locked nucleic acid): high-affinity hybridization of oligonucleotides containing N-acyl-
ated and N-alkylated 2-amino-LNA monomers. Chem. Commun. , 2003 , 2130-2131.
10. (a) Aldaye, F.A., Palmer, A., and Sleiman, H.F. (2008) Assembling materials with DNA as the
guide. Science , 321 , 1795-1799; (b) Feldkamp, U. and Niemeyer, C.M. (2006) Rational
design of DNA nanoarchitectures. Angew. Chem. Int. Ed. , 45 , 1856-1876; (c) Endo, M. and
Sugiyama, H. (2009) Chemical approaches to DNA nanotechnology. ChemBioChem , 10 ,
2420-2443; (d) Simmel, F.C. (2008) Three-dimensional nanoconstruction with DNA. Angew.
Chem. Int. Ed. , 47 , 5884-5887; (e) Heckel, A. and Famulok, M. (2008) Building objects from
nucleic acids for a nanometer world. Biochimie , 90 , 1096-1107.
11. (a) Rothemund, P.W.K. (2006) Folding DNA to create nanoscale shapes and patterns. Nature ,
440 , 297-302; (b) Endo, M., and Sugiyama, H. (2009) Chemical approaches to DNA nano-
technology. ChemBioChem , 10 , 2420-2443.
12. (a) Maune, H.T., Han, S., Barish, R.D. et al. (2010) Self-assembly of carbon nanotubes into
two-dimensional geometries using DNA origami templates. Nat. Nanotechnol. , 5 , 61-66;
(b) Yan, H. (2004) Nucleic Acid Nanotechnology. Science , 306 , 2048-2049; (c) Somoza, A.
(2009) Evolution of DNA Origami. Angew. Chem. Int. Ed. , 48 , 9406-9408.
13. (a) Seeman, N.C. (1998) Nucleic acid nanostructures and topology. Angew. Chem. Int. Ed. , 37 ,
3220-3238; (b) Seeman, N.C. (2003) DNA in a material world. Nature , 421 , 427-431;
(c) Seeman, N.C. (2005) The challenge of structural control on the nanoscale: bottom-up self-
assembly of nucleic acids in 3D. Int. J. Nanotechnol. , 2 ,348;(d)Douglas,S.M.,Dietz,H.,
Liedl, T. et al. (2009) Self-assembly of DNA into nanoscale three-dimensional shapes. Nature ,
459 , 414-418; (e) Andersen, E.S., Dong, M., Nielsen, M.M. et al. (2009). Self-assembly of a
nanoscale DNA box with a controllable lid. Nature , 459 , 73-76.
14. Aldaye, F.A., Lo, P.K., Karam, P. et al. (2009) Modular construction of DNA nanotubes of
tunable geometry and single- or double-stranded character. Nat. Nanotechnol. , 4 , 349-352.
15. Lo, P., Karam, P., Aldaye, F.A. et al. (2010) Loading and selective release of cargo in DNA
nanotubes with longitudinal variation. Nat. Chem. , 2 , 319-328.
16. (a) Seeman, N.C. (2005) From genes to machines: DNA nanomechanical devices. Trends
Biochem. Sci. , 30 , 119-125; (b) Sherman, W.B. and Seeman, N.C. (2004) A precisely
controlled DNA biped walking device. Nano Lett. , 4 , 1203-1207; (c) Shin, J.-S. and
Pierce, N.A. (2004) A synthetic DNA walker for molecular transport. J. Am. Chem. Soc. ,
126 , 10834-10835.
Search WWH ::




Custom Search