Biomedical Engineering Reference
In-Depth Information
222 (1999).
183. Lorenzo-Lamosa, M. L., RemuÄÂn-LÂpez, C., Vila-Jato, J. L. & Alonso, M. J.
Design of microencapsulated chitosan microspheres for colonic drug delivery. J.
Control. Rel. 52, 109±118 (1998).
184. Torres-Lugo, M. & Peppas, N. A. Molecular design and in vitro studies of novel
pH-sensitive hydrogels for the oral delivery of calcitonin. Macromolecules 32,
6646±6651 (1999).
185. Torres-Lugo, M., Garcia, M., Record, R. & Peppas, N. A. pH-sensitive hydrogels as
gastrointestinal tract absorption enhancers: transport mechanisms of salmon
calcitonin and other model molecules using the caco-2 cell model. Biotechnol.
Prog. 18, 612±616 (2002).
186. Mahkam, M. Using pH-sensitive hydrogels containing cubane as a crosslinking
agent for oral delivery of insulin. J. Biomed. Mater. Res. Part B, Appl. Biomater.
75, 108±112 (2005).
187. Bajpai, S. K. & Saxena, S. Enzymatically degradable and pH-sensitive hydrogels
for colon-targeted oral drug delivery. I. Synthesis and characterization. J. Appl.
Polym. Sci. 92, 3630 (2004).
188. Bajpai, S. K. & Saxena, S. Dynamic release of riboflavin from a starch-based semi
IPN via partial enzymatic degradation: part II. React. Funct. Polym. 61, 115±129
(2004).
189. Chivukula, P. et al. Synthesis and characterization of novel aromatic azo bond-
containing pH-sensitive and hydrolytically cleavable IPN hydrogels. Biomaterials
27, 1140±1151. Epub: 2005 Aug 11 (2006).
190. Stubbe, B., Maris, B., Van den Mooter, G., De Smedt, S. C. & Demeester, J. The in
vitro evaluation of `azo containing polysaccharide gels' for colon delivery. J.
Control. Rel. 75, 103±114 (2001).
191. Stayton, P. S. et al. Molecular engineering of proteins and polymers for targeting
and intracellular delivery of therapeutics. J. Control. Rel. 65, 203±220 (2000).
192. Asayama, S., Nogawa, M., Takei, Y., Akaike, T. & Maruyama, A. Synthesis of
novel polyampholyte comb-type copolymers consisting of a poly( L -lysine)
backbone and hyaluronic acid side chains for a DNA carrier. Bioconjug. Chem.
9, 476±481 (1998).
193. Asayama, S., Maruyama, A., Cho, C. & Akaike, T. Design of comb-type polyamine
copolymers for a novel pH-sensitive DNA carrier. Bioconjug. Chem. 8, 833±838
(1997).
194. Hoffman, A. S. et al. Design of `Smart' polymers that can direct intracellular drug
delivery. Polym. Adv. Technol. 13, 992 (2002).
195. Murthy, N., Robichaud, J. R., Tirrell, D. A., Stayton, P. S. & Hoffman, A. S. The
design and synthesis of polymers for eukaryotic membrane disruption. J. Control.
Rel. 61, 137±143 (1999).
196. Cheung, C. Y., Murthy, N., Stayton, P. S. & Hoffman, A. S. A pH-sensitive
polymer that enhances cationic lipid-mediated gene transfer. Bioconjug. Chem. 12,
906±910 (2001).
197. Lackey, C. A., Press, O. W., Hoffman, A. S. & Stayton, P. S. A biomimetic pH-
responsive polymer directs endosomal release and intracellular delivery of an
endocytosed antibody complex. Bioconj. Chem. 13, 996±1001 (2002).
198. Kyriakides, T. R. et al. pH-sensitive polymers that enhance intracellular drug
delivery in vivo. J. Control. Rel. 78, 295±303 (2002).
199. Murthy, N., Campbell, J., Fausto, N., Hoffman, A. S. & Stayton, P. S. Design and
synthesis of pH-responsive polymeric carriers that target uptake and enhance the
Search WWH ::




Custom Search