Biology Reference
In-Depth Information
[62] Zorn E, Nelson EA, Mohseni M, et al. IL-2 regulates FOXP3 expression in human
CD4+CD25+ regulatory T cells through a STAT-dependent mechanism and induces the
expansion of these cells in vivo . Blood 2006;108:1571-9.
[63] Antov A, Yang L, Vig M, Baltimore D, Van Parijs L. Essential role for STAT5 signaling in
CD25 + CD4 + regulatory T cell homeostasis and the maintenance of self-tolerance. J Im-
munol 2003;171:3435-41.
[64] Strauss L, Czystowska M, Szajnik M, Mandapathil M, Whiteside TL. Differential re-
sponses of human regulatory T cells (Treg) and effector T cells to rapamycin. PLoS One
2009;4:e5994.
[65] Furtado GC, Curotto de Lafaille MA, Kutchukhidze N, Lafaille JJ. Interleukin 2 signaling
is required for CD4( + ) regulatory T cell function. J Exp Med 2002;196:851-7.
[66] Thornton AM, Donovan EE, Piccirillo CA, Shevach EM. Cutting edge: IL-2 is critically
required for the in vitro activation of CD4 + CD25 + T cell suppressor function. J Immunol
2004;172:6519-23.
[67] Baan CC, van der Mast BJ, Klepper M, et al. Differential effect of calcineurin inhibitors,
anti-CD25 antibodies and rapamycin on the induction of FOXP3 in human T cells.
Transplantation 2005;80:110-7.
[68] Shin HJ, Baker J, Leveson-Gower DB, Smith AT, Sega EI, Negrin RS. Rapamycin and IL-2
reduce lethal acute graft-versus-host disease associated with increased expansion of
donor type CD4 + CD25 + Foxp3 + regulatory T cells. Blood 2011;118:2342-50.
[69] Anderson BE, McNiff J, Yan J, et al. Memory CD4 + T cells do not induce graft-versus-
host disease. J Clin Invest 2003;112:101-8.
[70] Foster AE, Marangolo M, Sartor MM, et al. Human CD62L memory T cells are less
responsive to alloantigen stimulation than CD62L + naïve T cells: potential for adoptive
immunotherapy and allodepletion. Blood 2004;104:2403-9.
[71] Dutt S, Baker J, Kohrt HE, et al. CD8 + CD44(hi) but not CD4 + CD44(hi) memory T cells
mediate potent graft antilymphoma activity without GVHD. Blood 2011;117:3230-9.
[72] Schmidt-Wolf IG, Negrin RS, Kiem HP, Blume KG, Weissman IL. Use of a SCID mouse/
human lymphoma model to evaluate cytokine-induced killer cells with potent antitu-
mor cell activity. J Exp Med 1991;174:139-49.
[73] Verneris MR, Baker J, Edinger M, Negrin RS. Studies of ex vivo activated and expanded
CD8 + NK-T cells in humans and mice. J Clin Immunol 2002;22:131-6.
[74] Baker J, Verneris MR, Ito M, Shizuru JA, Negrin RS. Expansion of cytolytic CD8( + )
natural killer T cells with limited capacity for graft-versus-host disease induction due to
interferon gamma production. Blood 2001;97:2923-31.
[75] Nishimura R, Baker J, Beilhack A, et al. In vivo trafficking and survival of cytokine-in-
duced killer cells resulting in minimal GVHD with retention of antitumor activity. Blood
2008;112:2563-74.
[76] Asai O, Longo DL, Tian ZG, et al. Suppression of graft-versus-host disease and ampli-
fication of graft-versus-tumor effects by activated natural killer cells after allogeneic
bone marrow transplantation. J Clin Invest 1998;101:1835-42.
[77] Ruggeri L, Capanni M, Urbani E, et al. Effectiveness of donor natural killer cell alloreac-
tivity in mismatched hematopoietic transplants. Science 2002;295:2097-100.
[78] Miller JS, Soignier Y, Panoskaltsis-Mortari A, et al. Successful adoptive transfer and
in vivo expansion of human haploidentical NK cells in patients with cancer. Blood
2005;105:3051-7.
[79] Olson JA, Zeiser R, Beilhack A, Goldman JJ, Negrin RS. Tissue-specific homing and
expansion of donor NK cells in allogeneic bone marrow transplantation. J Immunol
2009;183:3219-28.
[80] Henney CS, Kuribayashi K, Kern DE, Gillis S. Interleukin-2 augments natural killer cell
activity. Nature 1981;291:335-8.
[81] Olson JA, Leveson-Gower DB, Gill S, Baker J, Beilhack A, Negrin RS. NK cells mediate
reduction of GVHD by inhibiting activated, alloreactive T cells while retaining GVT ef-
fects. Blood 2010;115:4293-301.
[82] Zakrzewski JL, Suh D, Markley JC, et al. Tumor immunotherapy across MHC barriers
using allogeneic T-cell precursors. Nat Biotechnol 2008;26:453-61.
[83] Telford WG, Hawley T, Subach F, Verkusha V, Hawley RJ. Flow cytometry of fluorescent
proteins. Methods 2012;57(3):318-30.
[84] Piatkevich KD, Verkhusha VV. Advances in engineering of fluorescent proteins and
photoactivatable proteins with red emission. Curr Opin Chem Biol 2010;14:23-9.
[85] Shu X, Royant A, Lin MZ, et al. Mammalian expression of infrared fluorescent proteins
engineered from a bacterial phytochrome. Science 2009;324:804-7.
[86] Panoskaltsis-Mortari A, Price A, Hermanson JR, et al. In vivo imaging of graft-versus-
host-disease in mice. Blood 2004;103:3590-8.
[87] Miller MJ, Wei SH, Cahalan MD, Parker I. Autonomous T cell trafficking examined
in vivo with intravital two-photon microscopy. Proc Natl Acad Sci USA 2003;100:2604-9.
79
Search WWH ::




Custom Search