Biology Reference
In-Depth Information
[73] Karp JE, Gojo I, Pili R, Gocke CD, Greer J, Guo C, et al. Targeting vascular endothelial
growth factor for relapsed and refractory adult acute myelogenous leukemias: therapy
with sequential 1-beta-D-arabinofuranosylcytosine, mitoxantrone, and bevacizumab.
Clin Cancer Res 2004;10:3577-85.
[74] Galli SJ, Bast RC Jr, Bast BS, Isomura T, Zbar B, Rapp HJ, et al. Bystander suppression of
tumor growth: evidence that specific targets and bystanders are damaged by injury to a
common microvasculature. J Immunol 1982;129:890-9.
[75] Qin Z, Blankenstein T. CD4+ T cell-mediated tumor rejection involves inhibition of an-
giogenesis that is dependent on IFN gamma receptor expression by nonhematopoietic
cells. Immunity 2000;12:677-86.
[76] Muller-Hermelink N, Braumuller H, Pichler B, Wieder T, Mailhammer R, Schaak K, et al.
TNFR1 signaling and IFN-gamma signaling determine whether T cells induce tumor
dormancy or promote multistage carcinogenesis. Cancer Cell 2008;13:507-18.
[77] Meunier MC, Delisle JS, Bergeron J, Rineau V, Baron C, Perreault C. T cells targeted
against a single minor histocompatibility antigen can cure solid tumors. Nat Med
2005;11:1222-9.
[78] Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic
therapy. Science 2005;307:58-62.
[79] Manzur M, Hamzah J, Ganss R. Modulation of the “blood-tumor” barrier improves im-
munotherapy. Cell Cycle 2008;7:2452-5.
[80] Willett CG, Boucher Y, di Tomaso E, Duda DG, Munn LL, Tong RT, et al. Direct evidence
that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal
cancer. Nat Med 2004;10:145-7.
[81] Winkler F, Kozin SV, Tong RT, Chae SS, Booth MF, Garkavtsev I, et al. Kinetics of vascular
normalization by VEGFR2 blockade governs brain tumor response to radiation: role of
oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell 2004;6:553-63.
[82] Wildiers H, Guetens G, De Boeck G, Verbeken E, Landuyt B, Landuyt W, et al. Effect of
antivascular endothelial growth factor treatment on the intratumoral uptake of CPT-11.
Br J Cancer 2003;88:1979-86.
[83] Huang X, Wong MK, Yi H, Watkins S, Laird AD, Wolf SF, et al. Combined therapy of local
and metastatic 4T1 breast tumor in mice using SU6668, an inhibitor of angiogenic re-
ceptor tyrosine kinases, and the immunostimulator B7.2-IgG fusion protein. Cancer Res
2002;62:5727-35.
[84] Manning EA, Ullman JG, Leatherman JM, Asquith JM, Hansen TR, Armstrong TD, et al.
A vascular endothelial growth factor receptor-2 inhibitor enhances antitumor immunity
through an immune-based mechanism. Clin Cancer Res 2007;13:3951-9.
[85] Shrimali RK, Yu Z, Theoret MR, Chinnasamy D, Restifo NP, Rosenberg SA. Antiangiogen-
ic agents can increase lymphocyte infiltration into tumor and enhance the effectiveness
of adoptive immunotherapy of cancer. Cancer Res 2010;70:6171-80.
[86] Dirkx AE, oude Egbrink MG, Castermans K, van der Schaft DW, Thijssen VL, Dings RP,
et al. Anti-angiogenesis therapy can overcome endothelial cell anergy and promote
leukocyte-endothelium interactions and infiltration in tumors. FASEB J 2006;20:621-30.
[87] Dings RP, Vang KB, Castermans K, Popescu F, Zhang Y, Oude Egbrink MG, et al. En-
hancement of T-cell-mediated antitumor response: angiostatic adjuvant to immuno-
therapy against cancer. Clin Cancer Res 2011;17:3134-5.
[88] Motz GT, Coukos G. The parallel lives of angiogenesis and immunosuppression: cancer
and other tales. Nat Rev Immunol 2011;11:702-11.
492
Search WWH ::




Custom Search