Biomedical Engineering Reference
In-Depth Information
Amaro Martins, V.C., Goissis, G., 2000. Nonstoichiometric hydroxyapatite-anionic collagen composite as support
for the double sustained release of gentamicin and norloxacin/ciproloxacin. Artif Organs 24, 224-230 .
Ang, K.C., Leong, K.F., Chua, C.K., Chandrasekaran, M., 2007. Compressive properties and degradability of
poly(epsilon-caprolactone)/hydroxyapatite composites under accelerated hydrolytic degradation. J Biomed
Mater Res 80, 655-660 .
Baker, B.M., Gee, A.O., Metter, R.B., et al., 2008. The potential to improve cell iniltration in composite
iber-aligned electrospun scaffolds by the selective removal of sacriicial ibers. Biomaterials 29, 2348-2358 .
Biqiong Chen, K.S., 2005. Mechanical and dynamic viscoelastic properties of hydroxyapatite reinforced
poly(ε-caprolactone). Polymer Testing 24, 978-982 .
Breeze, J., Gibbons, A.J., Shieff, C., et al., 2011. Combat-related craniofacial and cervical injuries: a 5-year review
from the British military. J Trauma 71, 108-113 .
Chen, V.J., Smith, L.A., Ma, P.X., 2006. Bone regeneration on computer-designed nano-ibrous scaffolds.
Biomaterials 27, 3973-3979 .
Chen, L., Zhu, C., Fan, D., et al., 2011. A human-like collagen/chitosan electrospun nanoibrous scaffold from
aqueous solution: electrospun mechanism and biocompatibility. J Biomed Mater Res A 99, 395-409 .
Cohen, J., Harris, W.H., 1958. The 3-Dimensional anatomy of Haversian systems. J Bone Joint Surg Am 40,
419-434 .
Costa-Pinto, A.R., Correlo, V.M., Sol, P.C., et al., 2012. Chitosan-poly(butylene succinate) scaffolds and human
bone marrow stromal cells induce bone repair in a mouse calvaria model. J Tissue Eng Regen Med 6, 21-28 .
Desai, B.M., 2007. Osteobiologics. Am J Orthop 36, 8-11 .
Eshraghi, S., Das, S., 2010. Mechanical and microstructural properties of polycaprolactone scaffolds with
one-dimensional, two-dimensional, and three-dimensional orthogonally oriented porous architectures
produced by selective laser sintering. Acta Biomater 6, 2467-2476 .
Fu, Q., Saiz, E., Tomsia, A.P., 2011. Direct ink writing of highly porous and strong glass scaffolds for load-bearing
bone defects repair and regeneration. Acta Biomater 7, 3547-3554 .
Grayson, W.L., Frohlich, M., Yeager, K., et al., 2010. Engineering anatomically shaped human bone grafts. Proc
Natl Acad Sci U S A 107, 3299-3304 .
Guo, J., Meng, Z., Chen, G., et al., 2012. Restoration of critical-size defects in the rabbit mandible using porous
nanohydroxyapatite-polyamide scaffolds. Tissue Eng Part A 18, 1239-1252 .
Gupte, M.J., Ma, P.X., 2012. Nanoibrous scaffolds for dental and craniofacial applications. J Dent Res 91, 227-234 .
He, D., Genecov, D.G., Herbert, M., et al., 2010. Effect of recombinant human bone morphogenetic protein-2 on
bone regeneration in large defects of the growing canine skull after dura mater replacement with a dura mater
substitute. J Neurosurg 112, 319-328 .
He, X., Dziak, R., Yuan, X., et al., 2013. BMP2 genetically engineered MSCs and EPCs promote vascularized bone
regeneration in rat critical-sized calvarial bone defects. PLoS One 8, e60473 .
Hidaka, O., Iwasaki, M., Saito, M., Morimoto, T., 1999. Inluence of clenching intensity on bite force balance,
occlusal contact area, and average bite pressure. J Dent Res 78, 1336-1344 .
Hung, B.P., Hutton, D.L., Grayson, W.L., 2013. Mechanical control of tissue-engineered bone. Stem Cell Res Ther
4, 10 .
Hylander, W.L., Johnson, K.R., 1997. In vivo bone strain patterns in the zygomatic arch of macaques and the
signiicance of these patterns for functional interpretations of craniofacial form. Am J Phys Anthropol 102,
203-232 .
Inzana, J.A., Olvera, D., Fuller, S.M., et al., 2014. 3D printing of composite calcium phosphate and collagen
scaffolds for bone regeneration. Biomaterials 35, 4026-4034 .
Kemoun, P., Laurencin-Dalicieux, S., Rue, J., et al., 2007. Human dental follicle cells acquire cementoblast features
under stimulation by BMP-2/-7 and enamel matrix derivatives (EMD) in vitro. Cell Tissue Res 329, 283-294 .
Khalyfa, A., Vogt, S., Weisser, J., et al., 2007. Development of a new calcium phosphate powder-binder system for
the 3D printing of patient speciic implants. J Mater Sci Mater Med 18, 909-916 .
Search WWH ::




Custom Search